
P~-R12i 368 AUTOMATION OF QUALITY MEASUREMENT(U) GENERAL ELECTRIC 1/2
CO VUNNYVALE CALIF J A MCCALL ET AL. SEP 82
RADC-TR-82-247 F3@82-79-C-8267

UNCLSSIFIED F/G 912 .N

smhhhhhhhhhhiE

.4 - =• - - . . ,.,, -, - ...-:. - . . ,.- ...

1.0

13

.Ig

III1.25 11.4 1.6

MICROCOPY RESOLUTION TEST CHART
h A.S"Au "r - 1 6 3 A

m- | , mlmmlh .m l ,, l m~~ml mg~m W 'um • * -- -. - - - . -.- •. ,- ,- _

EADC.TR82-247
Final Technical Report
September 1962

AUTOMATION OF GUALITY MEASUREMENT

SGeneral Electric Company

James A. McCall
David Markham

APPROVED FOR PUBLIC RELEAS" DISTRIBUTII ULIMTED -

NOV 1 5 1982

A

ROME AIR DEVELOPMENT CENTER US ARMY INSTITUTE FOR RESEARCH IN
AIR FORCE SYSTEMS COMMAND MANAGEMENT INFORMATION C

GRIFFISS AIR FORCE BASE NY 13 441 AND COMPUTER SCIENCES
ATLANTA GA 30332

021

82 1i15 21
...

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-82-247 has been reviewed and is approved for publication.

APPROVED: /

JOSEPH CAVANO
Project Engineer

APPROVED: ~/ , ~

ALAN R. BARNUM
Assistant Chief
Command & Control Division

..>~.. .- FOR THE COMMANDER:

" =JOHN P. HUSS
* Acting Chief, plans Office

If your address has changed or if you wish to be removed from the,RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC.(COEE) Griffiss APB NY 13441. This will assist us in
maintaining a current miling list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whem Dos Eneeo). _,

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RADC-TR-82-247 -<,-42,/ 3 6"d
. TITLE (Mad ubtie) S. TYPE OF REPORT a PERIOD COVERED

Final Technical Report
AUTOMATION OF QUALITY MEASUREMENT Sep 79 - Sep 81

6. PERFORMING 0GG. REPORT NUMUER
_N/A

?t AUTHOR(a) S. CONTRACT OR GRANT NUMlER(I)

James A. McCall
David Markham F30602-79-C-0267

9. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASK
General Electric Company - Western Systems AREA & WORF UNIT NUMBES

1277 Orleans Drive 63728F
Sunnyvale CA 94086 25280201

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
September 1982Rome Air Development Center (COEE) 13. NUMBER OF PAGES

Griffiss AFB NY 13441 164
I4a MONITORIG.AGEA4CYJNAME a AOORESS(If diffemt from Conatolling Office) IS. SECURITY CL SS. (of tis repoft)
Same as block 11 and:
US Army Computer Systems Command/AIRMICS UNCLASSIFIED S
Georgia Institute of Technology IS&. 0D'CLASSIFICATION/OOWNGRAOING

Atlanta GA 30332 N/AscNEDULE

16. OISTRIBUTION STATEMENT (oa this Rept)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the abstract maered in Block 20. It differm from Report)

Same
S

U. SUPPLEMENTARY NOTES

RADC Project Engineer: Joseph P. Cavano (315) 330-7834

USACSC Project Engineer: Daniel E. Hocking (404) 894-3111

19. KEY WORDS (Contlmo on reveree side it neceeary and identify by block numb*)

Software Quality Software Measurement
Quality Metrics Software Tool

\

S0. AiSTRACT (Continue on reverse side if legoeearn md identify by block number)
A prototype software system has been developed which allows manual input
and provides for automated collection of software metric data, stores the
data, and provides processing and reporting to facilitate use of the
metric information to monitor and control the quality of a software
product. The software system, call the Automated Measurement Tool,
processes COBOL source code.

DOI 'OA.".3 1473 EDITION OF I NOV OS IS oUSOL 9T UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Doe Eneed)

UNCUASSIFIED

SUCUN'V CLAMUICAION OF THIS PAOR(Uhomm Do a uem

S9 SEUITY CLASSIFICATON OF T-1 VAG~lUhon Data Ent I

TABLE OF CONTENTS

Section Page

1.:!: INTRODUCTION 1-1

S"1.1 IDENTIFICATION .1 1

S1.2 SCOPE 1-1

1.3 ORGANIZATION OF DOCUMENT. 1-1
1.4 APPLICABLE DOCUMENTS. 1-1

1.5 EXECUTIVE SUMMARY . 1-2

2 BACKGROUND OF SOFTWARE METRICS. 2-1

3 DEVELOPMENT OF THE AMT 3-1

3.1 CONDUCT OF THE PROJECT 3-1

* 3.2 NEED FOR AUTOMATION 3-1

3.3 OPERATIONAL CONCEPT 3-4

3.4 DESIGN OF AMT . 3-9

3.4.1 DESIGN GOALS OF AMT 3-10

3.4.2 DESIGN APPROACH 3-12

3.4.3 USER ORIENTED CONCEPT. 3-15

3.5 IMPLEMENTATION APPROACH 3-16
" 3.6 AMT TEST* o.o.................o..... 9 o. 3-17

3.7 AMT TRAINING. . . . s 9 . . . 3-17

3. A T SRIIN. 4-1

4 AT ECRI . . . o . 4-1

4.2 EXECUTIVE SERVICES. 4-3

4.2.1 COMMAND LANGUAGE 4-3

4.2.2 GENERAL CONVENTIONS FOR ENTERING A COMMAND 4-4

4.3 DATA BASE MANAGEMENT SERVICES o . . . 4-5

4.3.1 DATABASE DESIGN. 4-5 *

4.3.2 FILE SPECIFICATION CONVENTIONS 4-11

• I

I

TABLE OF CONTENTS

Section Page 1
4.4 AUTOMATED MEASUREMENT SERVICES. 4-11

4.4.1 AUTOMATED MEASUREMENT OF SOURCE CODE 4-11

4.4.2 AUTOMATED AID TO MANUAL MEASUREMENT OF METRICS . . 4-14

4.4.3 USE OF OTHER AUTOMATED TOOLS 4-15

4.5 REPORT GENERATION SERVICES. 4-16

4.5.1 MODULE REPORT 4-16

4.5.2 METRIC REPORT. 4-16

4.5.3 EXCEPTION REPORT 4-16

4.5.4 QUALITY GROWTH REPORT 4-17

4.5.5 NORMALIZATION REPORT. 4-17

4.5.6 STATISTICS REPORT. 4-17

4.5.7 SUMMARY REPORT 4-17

4.5.8 WORKSHEETREP 4-17

4.5.9 MATRIX REPORT. 4-17

4.5.10 REPORT SUMMARY 4-18

5 RESULTS OF QUALITY METRIC EXPERIMENT 5-1

5.1 INTRODUCTION . 5-1

5.2 QUALITY GOALS FOR THE AMT DEVELOPMENT 5-2

5.2.1 STATEMENT OF WORK RELATED QUALITY GOALS. 5-2 r

5.2.2 SPECIFIC QUALITY GOALS ESTABLISHED 5-2

5.2.3 APPLICATION METHODOLOGY. 5-6

5.2.4 DESIGN AND IMPLEMENTATION GUIDELINES 5-7

5.3 APPLICATION OF WORKSHEETS 5-7

5.4 RESULTS . o 5-8

5.4.1 REQUIREMENTS AND DESIGN 5-8

5.4.1.1 General Observatibn At Requirements

and Design o o o o o o o 5-8

5.4.1.2 Metric Scores 5-10

,.i

TABLE OF CONTENTS

*Section Page

5.4.2 IMPLEMENTATION 5-13

5.4.2.1 Gene al Observations At Implementation. . 5-13

5.4.2.2 Metrics Scores 5-13

5.4.2.3 Comparison With Quality Goals 5-15

5.4.1.3 Comparison with Quality Goals 5-10

5.5 COMPARISON OF AMT METRIC SCORES WITH PAST EXPERIENCES .. 5-24

5.6 EXPERIMENT CONCLUSIONS 5-26

6 FUTURE DEVELEN ENT. 6-i

7 REFERENCES .. . 7-1

Appendix

A SAMPLE REPORTS . A-i

B CONVERSION OF ANT FROM VAX 11/780 TO HONEYWELL 6000 B-i

B-1 INTRODUCTION B-2

B-2 CODING STANDARDS. B-3

B-3 VAX TO H6000 TRANSFETA B-7

B-4 VAX LISTINGS . B-9

C DBS SRVE Cm

C- DBSPURVOE . C-i

C-2 THE PROBLEMS OF USING MDQS C-3

C-3 ALTERNATIVE DBMS FOR CONSIDERATION IN FUTURE

A MT VERSIONS . C-5

D TOOL SURVEY . D-1

D-1 PURPOSE . D -2

D-2 CODING AND IMPLEMENTATION: METRICS APPLICABILITY D-3

D-3 MATRIX OF SOFTWARE TOOLS D-7

D-4 TOOLS USED . D-15

LIST OF TABLES

Table
Number Page

3.4.1-1 Software Quality Factors 3-11

4.4.1-1 Automated Metric Data. 4-13

5.2.2-1 Software Quality Requirements Survey Form. 5-3

5.2.2-2 Quality Requirements for AMT (In Order of Ranking) 5-4

5.2.2-3 Specific Quality Goals 5-5

5.4.1.1-1 Observations Based on Worksheet Inspection of Requirements

Specification and Preliminary Design Specification 5-9

5.4.1.2-1 Metric Scores. 5-11

5.4.2.2-1 Implementation Metric Scores 5-14

5.4.2.3-1 Comparison Of Metric Scores With Specified Thresholds. . . . 5-16

5.4.2.3-2 Metric Scores Related to Quality Goals 5-18

5.4.2.3-3 Normalization Function Performance 5-20

5.5-1 Implementation Metric Score Comparisons. 5-25

B2-1 Code Standardization . B-3

B2-2 System Dependent Function Differences. B-4

C3-l Data Base Management Systems C-6
C3-2 MRI. C-8 .:

C3-3 IDMS: CODASYL-Type Data Base Management System. C-11

C3-4 Total: HOL-Based Data Base Management System. C-13

C3-5 IMS: HOL-Based Non-CODASYL Data Base Management System. . . C-16

C3-6 MRDS: Self-Contained Data Base Management System. C-19

C3-7 MDQS: Self-Contained Data Base Management System. C-23

iv

LIST OF ILLUSTRATIONS

Figure
*Number Page

*3.3-1 Application of the Metric Worksheets 3-6

3.3-2 AMT Operational Concept 3-7

*3.3-3 Support to Personnel . 3-8

*3.4-1 AMT Hierarchy Diagram . 3-13

4.1-1 Services Provided by Functional Areas 4-2

4.3-1 Logical Description of ANT Data Base 4-7

4.3-2 Physical Organization of the Data Base 4-8

4.3-3 Pointer Table . 4-9

-. 4.3-4 ANT Processing . 4-10

A-1 Worksheet 1 . A-2

*A-2 Worksheet 2a . A-4

*A-3 Worksheet 2b . A-8

A-4 Worksheet 3 . A-12

D3-1 Matrix of Software Tools Having Metric Applicability D-8 -

0 3-2 Software Tools Survey . 0-14

D4-1 Tool Usage . 0-16

v

PREFACE

This document is a report prepared for the Rome Air Development Center (RADC)

and the US Army Computer Systems Command/AIRMICS in support of the Automation i

of Quality Measurement project. It is the final report (CDRL A003) for the

Contract No. F30602-79-C-0267. The purpose of the project was to provide

computer programs, supporting documents, and research results related to the

effort of measuring certain quality characteristics of software. I

This report was prepared by J. McCall and D. Markham. Contributions were made

by R. McGindley, M. Hegedus, M. Matsumoto, A. Stone, and M. Stosick.

Technical guidance was provided by Mr. J. Cavano of RADC and supported by Mr.

D. Hocking of AIRMICS.

The objective of this study was to establish and demonstrate a method of

automating the measurement of significant aspects of software quality.

Conceptually, the method of software measurement through metrics provides a

mechanism in conjunction with a vigorous development program to provide

management a technique to improve the quality of software products. 5

v

-I

vi

I1

SECTION 1

INTRODUCTION

1.1 IDENTIFICATION

This document is the Final Report of the research and development tasks

associated with the development of the Automated Metrics Tool (AMT). The

development and construction of this prototype software tool was provided by

GE Western Systems, Sunnyvale, Calif. in compliance with the requirements set F

forth by Rome Air Development Center (RADC) and the US Army Computer Systems

Command/AIRMICS for the Automation of Quality Measurement Project, Contract

No. F30602-79-C-0267.

1.2 SCOPE

This document includes a description of the AMT and the results of some

, parallel research efforts; the use of AMT on itself to derive quality

measurements of the tool, the design goals of the AMT, the conversion of AMT

* from a VAX 11/780 development machine to a Honeywell 6000 series host

environment, and the comparison of metric scores across several projects

including the AMT. Also included is a description of how the AMT could be

used to support a software development activity.

1.3 ORGANIZATION OF DOCUMENT

This section of the document is an introduction to the remainder of the

report. The second section provides a brief description of the background and

application of metric concepts referencing previously funded RADC and USACSC

:unded research. The third section will describe how the AMT was developed

*" and the motivation for developing it. Section 4 is a description of the AMT.

Section 5 describes how we used the AMT during its development to apply

metrics. The Final Section suggests future research in metrics and identifies

enhanced capabilities that should be considered for the AMT.

1.4 APPLICABLE DOCUMENTS

The following documents include those published and distributed by RADC which

are background to this effort and explain in detail the concept and manual

application of software quality metrics, as well as those produced as a result

of this research task:

1-1

McCall, J.A. et al., "Factors In Software Quality". RADC-TR-77-369, June 1977.

McCall, J.A., and Matsumoto, M.T., "Metrics Enhancement Final Report',

RADC-TR-80-109, Volume I, April 1980.

McCall, J.A., and Matsumoto, M.T., "Software Quality Measurement Manual*,

RADC-TR-80-109, Volume II, April 1980.

The applicable documents produced during the course of this research task,

identified with their associated CDRL item number:

AMT User's Manual A012

AMT Training Material A006

AMT Program Maintenance Manual A013

AMT Functional Description A007

AMT Data Requirement Document A008

AMT Sys./Subsystem Specification A009
AMT Program Specification AOO

AMT Data Base Description AOll

ANT Test Plan A015

Test Analysis A014

AMT Program Maintenance Manual A013

1.5 EXECUTIVE SUMMARY
The concept behind software quality metrics is to provide software acquisition

managers with a mechanism to quantitatively specify and measure the level of
* quality in a software product. To provide this mechanism, an acquisition

manager or a software developer must collect data from the products of the

software development process. The actual data items collected are identified

in detail in the "Metric Enhancement Final Report", RADC TR-80-109. This raw

data is then used to calculate metric values which can be used to assess the

quality of the software being produced.

The purpose of the Automated Measurement Tool (AMT) is to provide automated

support to the application of the metrics concept. Normally, the metrics data
must be collected by hand in a tedious, error-prone, and time-consuming

process.

1-2

The intent of the AMT is to automatically collect and store the metric data

economically and reliably and provide a data base of metrics data to

facilitate research and evaluation. This will then allow the acquisition

manager to easily collect and analyze the software quality metric values for

any given software development using the AMT. The AMT data base and reporting

capabilities were used to the extent possible ouring the development of the

AMT itself to support application of metrics. This is the first actual

contractual application of metrics and the lessons learned from this

experience are documented in this report.

The current version of the AMT operates on the Honeywell 6180/GCOS computer

system at RADC. It processes COBOL code.

1

S

I

1-3

.1

SECTION 2

BACKGROUND OF SOFTWARE METRICS

The basic concepts for the software metrics automatically collected,

calculated, and reported by the AMT were derived during the Factors in

Software Quality contract, contract number F30602-76-C-0417. A framework for

defining metrics [CAVJ78], applying them to all of the products, including

documentation, of a software development, and relating them to management

goals was developed [MCCJ771]. A preliminary handbook for an Air Force System

Program Office was developed to describe the framework [MCCJ77III]. Initial

validation of some of the metrics was performed using command and control

software systems written in JOVIAL that had 2-4 years of operation and

maintenance data available [MCCJ771I]. During a subsequent research effort,

the Metrics Enhancement Contract, contract number F30602-78-C-0216, further

validation was conducted using an Army financial management information system

written in COBOL that had been transported to two different vendor's computers w

besides the initial development system and a software support system written

in FORTRAN that had been transported to a number of different DEC operating

systems as well as a Honeywell 6000 computer system. At the end of this

effort, validation of metrics related to the quality factors Reliability, S

Maintainability, Flexibility, and Portablility was achieved [MCCJ79l]. More

importantly, techniques were developed to apply the metrics and derive A

information during a software development that facilitated identification of

potential quality problems, areas needing improvement in standards and

conventions, test strategy, and acceptance criteria. An overview of these

techniques was provided in a Software Quality Measurement Manual [MCCJ78II].

Currently, software metrics is one of the most widely investigated subject

areas in the software research community. Many individuals and organizations

are developing metrics related to or extending the metrics developed under the

previously mentioned RADC/USACSC funded research and the pioneering work of

the others ([HALM77], [MCCT76], [BOEB73], [CHER], [FAGM76], [FOSL76],

[HESC77]). The significance of this continued, research is not only the w

refinement of the set of metrics which can be utilized in the framework

established in the report, "Factors in Software Quality" [MCCJ77], but also

the industry wide experiences being gained in applying and using metrics

during software developments.

2-1

U

As more organizations apply metrics, more quantitative information is becoming

available about the software being developed. This information supports

research in other software engineering disciplines such as software tools and

development environments, programming languages, design techniques, and cost
estimation.

It is expected that the use of software metrics will become a standard

contractual instrument to assure a certain level of quality.

This growing recognition by government organizations, further refinement by

the research community, and application experience by a number of

organizations makes the introduction of a tool like the AMT timely.

I 2-

II

>1

~1

'- 2-2

4

SECTION 3

DEVELOPMENT OF THE ANT

| 3.1 CONDUCT OF THE PROJECT

The ANT project was conducted in four phases: design, implementation,

esting, and delivery/training. Our motivation and approach to each phase

will be discussed in this section.

3.2 NEED FOR AUTOMATION
At the outset of the project, a specific need was envisioned for a family of

software tools that would support the specification, measurement, and
reporting of software quality metrics. The viability of effective measurement

*. of software quality has been enhanced by the evolution during the past decade

' of modern programming practices, structured, disciplined development

techniques and methodologies, and requirements for more structured, effective

documentation.

The actual measurement of software quality is accomplished by applying

software metrics (or measurements) to the documentation and source code
produced during a software development. These measurements are part of the

established model of software quality and through that model can be related to

various user-oriented aspects of software quality.

The current set of metrics utilized in the model which is comprised of 11

quality factors has 39 software metrics. Subsets of these 39 metrics can be

applied during each phase of the development. The breakdown by phase is:

15 can be applied during requirements

34 can be applied during design

38 can be applied during implementation

To calculate this entire complement of metrics, 296 individual data items have 9

to be collected. Worksheets, described in paragraph 3.2, contain all of the

individual data items. A breakdown by phase of the individual data items is:

3-1 2

U -]

31 measured during requirements

173 measured during design

92 measured during implementation

296 Total

* All of the data items collected during requirements and 102 of the items

collected during design are system level measurements which are taken once.

However, the remaining 71 items collected during design and the 92 collected

during implementation are module level measurements which are taken for each

* module in the system. Thus, for even a modestly sized system of 100 modules,

the number of data items to be collected is:

31 (requirements) + 102 (design) + 100x71 (design)

+100x92 (implementation) = 16,433.

On a particular development project, a subset of these data items relating to

the important quality factors to that development would be collected.

To collect this large a number of data items manually from documentation and

source code is a very time-consuming, error prone, and thus expensive process. r

*~ The time consuming nature of manual inspection of source code impacts one of

the important necessary conditions for the quality assurance effort. For
project management to make the necessary corrections to meet a specified

quality goal, software quality assurance analysts must be able to report
* discrepancies as soon as possible after the code is ready for inspection.

Metric data also needs to be archived for developmental, life-cycle and

* research reasons. Software quality assurance analysts need to have an overall

view of the metric scores. Researchers need to have a historical record

across projects for comparative purposes. This historical record can most

easily be kept, updated, and transmitted if it is in machine readable form.

This data base can be used in conjunction with other information such as
ii trouble reports, maintenance records, or cost data to determine if the metric

data correlates with parallel or past events. If an environment is calibrated

through experience, predictions could then be made. All of these capabilities

l- can be realized if the metric data is placed in a data base.

3-2

1 5-
An important ingredient in an effective software quality assurance effort is

to operate in such a fashion that measurement does not interfere significantly

with development, test, or other procedures which are critical in production.

If metric analysis is done by machines the possibility arises to move a p

majority of the quality assurance activity off-line of the development

activity.

For these three reasons, the tedious nature of examining source, the need for 5

storage and retrival of metric data, and the off-line nature of SQA activity,

automation of metric applications is important to software quality metric

V implementation.

The goals of this project were to make this process more timely, reliable, and

economic. Automating the collection and reporting provides these three

goals. In addition, the data is maintained in a data base for use as a

quality assurance management information system, as an historical record of

the development project, and as a repository for researchers to investigate

combinations of data items to form new metrics.

The prototype version of the AMT, which is described in more detail in Section i

4 of this report and referenced project documents, was developed to

demonstrate the effectiveness of these concepts. 25 module level measurements

are automatically collected. Thus, of the 16,433 measurements that could

potentially be required in our previous example, the AMT automates collection

of 2500. The AMT data base accommodates the total complement of data items.

The measurements not taken automatically have to be entered into the data base

manually.

The 25 data items collected automatically represent 27% of the 92 data items

measured during implementation. No attempt was made to automatically measure

any data items related to requirements and design. The reasons are discussed

in the next paragraph.

3-3

3.3 OPERATIONAL CONCEPT

The need for automated support of the application of the metrics is tempered

by the fact that the metrics we have defined in previously funded RADC and

USACSC projects not only relate to source code but also to material,

specifically documentation, normally available during the requirements and

design phases of a software development. Because, at the present time, there

are few formal requirements or design specification languages widely accepted

or used throughout the software industry and the material produced during

these phases is not produced in machine readable form, this material does not

lend itself to automated measurement. However, we see a trend toward more use

of formal requirements and design representations such as SREM, PSL/PSA, POL

and automated analysis tools relating to them. This trend will allow

expansion of the AMT in terms of automated collection of metric information

during these early stages.

The AMT is a system that is used during all phases of a software development

process: requirements specification, design specification, implementation,

integration and test, and operation. The capabilities provided by AMT are:

automatic collection of specified metric data from machine-readable materials,

facilitation of collection and entry of other metrics data, storage and

*) retrieval of metrics data, and generation of different reports for use in

tracking software quality. These capabilities are used by four different

types of users: a customer or user of the software system being developed,

the software project's quality assurance analyst, the software development

project manager, and a software quality researcher.

With these constructs in mind, the automated measurement of software quality

* is designed to work in the following way:

(1) At the beginning of a project the quality goals of the project are

stated and desired metric values are determined.

(2) At the conclusion of the requirements phase, worksheet #1 is manually

completed and the data is manually entered into the AMT's data base.

(3) When the preliminary design is completed, worksheet #2a is manually

completed and entered into the data base.

3-4

I

(4) As various detail designs are completed, worksheets #2b are manually

entered for each module. At the conclusion of the design phase an

update to #2a is also manually placed in the data base. Steps 2, 3,

and 4 utilize the Requirements Specification, Preliminary and

Detailed Design documents, test plans, preliminary users manual, and

other material normally available during the requirements and design

phases of a project.

(5) During implementation, as soon as COBOL source code is placed under

configuration management, the source code is measured by the quality

measurement tool and this data is also entered into the data base.

Additional data, identified on worksheet #3 is manually entered.

This application timing is depicted in Figure 3.3-1.

(6) Various updates may be made as required.

(7) At delivery of the software product, it is anticipated that all

metric information would be updated to reflect the current state of

the code and documentation. W

(8) At each stage of application, a number of reports would be generated

to provide the appropriate information to various personnel involved

in the development.

One primary purpose of the AMT is to calculate the metric scores from the data

input from the worksheets. These scores can then be compared with desired

scores. This operational concept is depicted in Figure 3.3-2 and is

compatible with the methodology described in the Software Quality Measurement

Manual [MCCJ79]. Additional helpful information is available to support

various decisions, quality assurance activities, and testing activities.

Figure 3.3-3 identifies the support provided. This support is described

further in Section 4 where each report is defined. '

The potential of the software metric concepts can be realized by their

inclusion in software quality assurance programs. Their impact on a quality

assurance program is to provide a more disciplined, objective approach to

quality assurance and to provide a mechanism for taking a life cycle viewpoint

of software quality. The benefits derived from their application are realized

in life cycle cost reduction.

3-5

- -r .'-- -. - - -

DEVELOPMENT PHASES

L REQUIREMENTS TEST
ANALYSIS DESIGN IMPLEMENTATION AND~INTEGRATION"

I
REQUIREMENTS
SPEC

METRIC PRELIMINARY
WORKSHEET DESIGN
1 SPEC

USER'S MANUAL
(DRAFT)

DETA LED
DESIGN

METRIC SPEC
WOKSEE (BUILD TO)WORKSHEET :
2aSOURCE

2a TEST CODE
PLAN DETAILED
AND DEIG
PROCEDURES SPEC TESTSIGN

(BUILT TO) RESULTS

I USER'S MANUAL
(FINAL)

METRIC '

WORKSHEET 7

METRIC METRIC
WORKSHEET WORKSHEET
#2a 3

UPAEMETRIC WORKSHEET METRIC WORKSHEET
#2b - 2a
UPDATE UPDATE

Figure 3.3-1 Application of the Metric Worksheets

3-6U
!]I

. '-W-I-

6W L"

wl.
Q'

IW:2jU

CCC

I-,z

C6 a
f~t .: 'L"

i~f 'hi

0'0

0 c0

VIV

I Wt

PERSONNEL SUPPORT REPORT TYPE

Program Management Progress with Respect Normalization

to Quality Goals Quality Growth

Matrix

Statistics

Developers Standard Enforcement Metric

Design Decisions Summary I

"Quality Assurance Standards Enforcement Metric

Compliance with Quality Quality Growth

Goals Problem Identification Normalization 3

Matrix

Module

Test Test Strategy Metric p

Test Emphasis Summary ...

Test Effort Exception

Researchers Analysis Quality Growth
Worksheet

Figure 3.3-3 Support to Personnel

3-8

The measurement concepts complement current Quality Assurance and testing

practices. They are not a replacement for any current techniques utilized in

* normal quality assurance programs. For example, a major objective of Quality

assurance is to assure conformance with user/customer requirements. The 5

software quality metric concepts described in this report provide a

methodology for the user/customer to specify life-cycle-oriented quality

requirement usually not considered, and a mechanism for measuring if those

reuuirements have been attained. A function usually performed by Quality S

assurance personnel is a review/audit of software products produced during a

K software development. The software metrics provide formality and

quantification to these reviews/audits of the documents and code. The metric

concepts also provide a vehicle for early involvement in the development since S

there are metrics which apply to the documents produced early in the

KI development.

Testing is usually oriented toward correctness, reliability, and performance U

(efficiency). The metrics assist in the evaluation of other qualities such as

maintainability, portability, and flexibility.

During the initial design phase of the AMT project, an informal requirements S

definition and operations concept reflecting the discussions in this paragraph

were documented to ensure a common understanding between the RADC and USACSC

project offices and the development team. These concepts were presented at a

review at RADC. The informal requirements definition and operations concept

were not called for in the statement of work, but were developed to supplement

the requirements described in the statement of work. They were not formally

delivered.

3.4 DESIGN OF AMT

The product of the design phase of the AMT project was a Design Plan, CDRL

AO01. The Design Plan contained a detailed design of the AMT, a Data Base

Specification, a tool survey and a DBMS survey, the implementation schedule, U

and the plan for applying metrics to the AMT development. Each of these steps

in the design of the AMT will be described in this section.

3-9

3.4.1 DESIGN GOALS OF AMT

There were specific design goals identified for the AMT prototype. A highly

usable tool that could eventually operate in a number of environments in

Lq conjunction with other software and project management tools was desired. The

software quality measurement framework was used to identify the design goals.

Table 3.4.1-1 provides the formal definitions of the quality factors, from

which three were chosen to be emphasized during the development of the AMT.

The statement of work identified Portability, Flexibility and Interoperability

as important quality goals to be emphasized in the AMT development. They were

identified as important because of the following facts:

(1) Portability was considered to be important because the AMT was

developed for a Honeywell H6180/GCOS computer but may eventually be

transported to Honeywell H6180/MULTICS, IBM 370/OS, and PDP
IAS

11/70/ environments. p

(2) Flexibility was an important design consideration because the AMT is

a prototype and additional recuirements will be forthcoming. Also the

tool will eventually be used in a variety of environments, and have

to process other languages besides COBOL.

(3) Interoperability was important because in any particular environment

where the AMT might be used, other software tools might be available
that are sources of metric information. We would want to be able to

easily interface the AMT with these other tools to take advantage of

the metric information the other tools collect automatically.

b

3-10

LP

r

I.

Table 3.4.1-1 Software Quality Factors

FACTORS DEFINITIONS

CORRECTNESS Extent to which a program statisfies its
specifications and fulfills the user's
mission objectives.

RELIABILITY Extent to which a program can be expected
to peform its intended function with
required precision.

INITIAL
PRODUCT EFFICIENCY The amount of computing resources and code
OPERATION required by a program to perform a function.

INTEGRITY Extent to which access to software or data
by unauthorized persons can be controlled.

USABILITY Effort required to learn, operate, prepare
input and interpret output of a program.

LIFE

CYCLE MAINTAINABILITY Effort required to locate and fix an error
STAGES in an operational program.

PRODUCT
REVISION TESTABILITY Effort required to test a program to insure

it performs its intended function.

FLEXIBILITY Effort required to modify an operational
program.

PORTABILITY Effort required to transfer a program from
one hardware configuration and/or software
system environment to another.

PRODUCT
TRANSITION RESUABILITY Extent to which a program can be used in

other applications - related to the
packaging and scope of the functions that
programs perform.

INTEROPERABILITY Effort required to couple one system with
another.

3.

S

3-1 1

3.4.2 DESIGN APPROACH

Specific design approaches were taken to satisfy these quality goals.

In part the modularity of the system design enhances the qualities of

flexibility and portability. The AMT was divided into six functional

subsystems: the Executive Services (EXS), the Data Base Management Services

(DMS), the Automated Measurement Services (AMS), the Preprocessing Subsystem

(PPS), the Report Generation Services (RGS), and the AMT Utility Services

(UTL) as illustrated in the AMT hierarchy diagram shown in Figure 3.4-1.

The EXS provides the interface between the user and the AMT. The EXS

interprets the user's commands and performs all of the necessary calls to the r

* other AMT functions that actually carry out the actions requested by the

" user. To provide greater portability the AMT has its own Data Base Management

Services (DMS). The DMS provides the capability to store and retrieve metric
data from a random access file. The data base is described in more detail in

Section 4 and in the Data Base Description Document, CDRL A011. The primitive

operating system dependent functions of: opening a file, closing a file,

reading a record from the file, and writing a record into the file are

performed by the AMT Utility Services (UTL). These functions were isolated to

facilitate modification for transporting the system to other environments.

The Automated Measurements Services (AMS) extracts certain metric information

directly from the COBOL source code. The Preprocessing Subsystem (PPS) is

provided soley to support AMS functions. This subsystem has no direct

interface to the user and is accessed only by the AMS. The basic function is

a generalized parsing system to take source code input by an AMT user and

generate parse trees representing that code.

4
The parse tree is then used by the AMS functions to produce values for the

metrics worksheets. It should be noted that the preprocessing functions

perform their own data management services, independent of the DMS functions.

The reason for this separation is that the data that AMS and DMS functions

individually manipulate are completely different in form and content and the

AMS functions are the only functions that use or manipulate that particular

type of data. The use of a generalized parsing function is a key design

3-12

7' 1m

Kv

wiU

z z-

R E-

I-h

I-VI

3=1

choice. By describing the grammar of a language other than COBOL and

developing a scanner for that language, the parser will produce a parse tree

representation that can be used by the remainder of the AMT functions with

minor modification. Finally, the various metric reports and statistical

analyses are performed by the Report Generation Services (RGS). We designed

our own data management routines primarily to enhance the portability of the

system. We conducted a Data Base management System survey on the target

environments (HGl80/GCOS, HGl80/Multics, IBM 370/OS, PDP 11/70/IAS) to

evaluate the portability issues. Certainly if one DBMS had existed on all

four environments our portability problems with respect to data would have

been solved. However, this was not the case and, in fact, our analysis

determined that developing our own data management routines would be much less

expensive than having to convert from one DBMS to another when we wanted to

* move the AMT to another environment. The goals of the Data Management

- Services were:

e The data base must be portable not only in the transfer of the data

base functions from one machine to another, but the data within the

data base needs to be portable for research reasons.

e The data must be easy to access and insert.

* * The user must be able to enter and exit the data base with ease.

* * The data base needs to be highly maintainable.

* * The data base needs to be accessible by other software tools in a given

software development environment.

e No on-line access via a general query language was provided.

* Appendix C contains the results of the DBMS survey.

3 1 1

1

1 i

3-14

1. _ _ _ _ _q

Interoperability was designed into the system primarily through the data base

design. By providing routines to manipulate the data with respect to the AMT

data base, the output of other software tools could be accessed and inserted

into the AMT data base. Thus if the AMT was being used in an environment IF-

where PSL/PSA was utilized, the output of PSA could be searched by a software

*: routine and appropriate data extracted and inserted into the AMT data base.

We conducted a tool survey to identify potential tools for interfacing with

the AMT. Several potential tools were identified. The results are in

Appendix D.

During the design phase, an implementation schedule was developed. The

approach taken will be described in the next paragraph. Also, during the o-
design phase, we began applying metrics to the development effort. This

* application was an experiment to assess the effectiveness of applying metrics

during a development. The approach and results of the experiment are in

Section 5 of this report. m

The actual design of the AMT was conducted using structured design

techniques. The design of the system was iteratively decomposed to more

detailed descriptions of the subsystems shown in Figure 3.4-1 and eventually 1

to detailed designs of each module. Hierarchy charts for each subsystem were

generated, HIPO diagrams were constructed for each module, and program design

language descriptions (PDL) of the logic were prepared. The PDL used was an

Ada-like language developed by General Electric. Complexity measures were

automatically calculated from the PDL's. These metrics were utilized during

design team walkthroughs to evaluate the overall complexity of the design.

The design was documented in the Design Plan (CDRL AO01) and in part in the

System/Subsystem Description Document (CDRL Aog).

3.4.3 USER ORIENTED CONCEPT

Experience with software quality metrics has pointed out that a variety of

personnel have use of the metric data for a variety of reasons. Program

Managers are interested in the progress of a project with regard to quality

goals. Developers use metric data to aid design decisions and enforce

standards. Test personnel use the data to determine test strategies,

emphasis, and level of effort.

3-15

LU

The quality assurance staff monitors and reports on violations to standards, 6

goal achievement, and quality compliance. Researchers are typically

interested in historical data.

Given these variety of users, ranging from sophisticated to uninitiated, from

experienced to untrained, the tool was designed with the following

charateristics in mind:

-l

9 Transparent: The actual operations of the tool should not interfere

with the use of the tool.

* System independent: The user should have to use a minimum of system

language to use the tool.

a Forgiving: The tool should have the capability of trapping errors and

recovering gracefully to minimize the impact on the user.

e Helpful: The software should carry as much interactive training

functions as possible within the tool.

9 User flexible: For the experienced user of the tool, options should be

available to increase the speed with which the user can interact with

the system.

* In general the tool should be "user friendly." :1

A User's Manual (CDRL A012) was developed to provide guidance to users on the

use of the AMT.

3.5 IMPLEMENTATION APPROACH

The implementation of the AMT was done in IFTRAN2, a General Research

Corporation structured programming preprocessor to FORTRAN. IFTRAN2 provided

a structured FORTRAN-based language for developing the source code. As a

result, the code is well structured and easier to read. The implementation

was conducted incrementally over an 11 month period. The initial capability

developed was the Executive Services Subsystem. This subsystem processes the

user command language. By providing this function first, future users could

begin training and gain familiarity with the user interface. Also the

Preprocessing Subsystem was started early during the implementation phase.

The parser portion of this subsystem was an existing system. We had to

describe the COBOL grammar in a Backus-Naur-Form (BNF) like language, however,

and because we could find no such description of COBOL we started this task

early to avoid unexpected difficulties.

3-16

The next subsystem to be developed was the Data Management Services. This

allowed demonstration of the capability to manually enter and extract data

from the data base. The Utilities Subsystem was also developed at this time

The Automated Measurement Subsystem and Report Generation Subsystem were then

completed to provide the full operational capability.

Documentation of the implementation of the AMT was provided in the Program

Specification (CDRL AOO), the Program Maintenance Manual (CDRL A013), and the

source code provided.

Because of the inefficiencies of developing the software remotely on the RADC U

H6180, the AMT subsystems were prototyped on a General Electric VAX 11/780.

To enhance the portability of these prototypes to the RADC H6180, specific

standards and conventions were developed and followed. These standards and

conventions are described in Appendix B. Final system integration and U

modification was done remotely on the RADC H6180.

3.6 AMT TEST

A Test Plan (CDRL A015) was developed and submitted for review by RADC and

USACSC at the end of the design phase. This test plan incorporated a strategy

of testing each subsystem increment as it was developed, integrating them

stepwise into the development environment, performing system test,

transferring to the RADC target environment, and performing regression system

tests. The RADC testing was done remotely. The tests were based primarily on

demonstrating the functional capabilities of the AMT and its error handling

capabilities, using five COBOL programs provided by the USACSC. The results

of the tests were documented in a Test Analysis Document (CDRL A014) s

3.7 AMT TRAINING

The last phase of the project was to develop a training outline, provide

training in the form of a demonstration at RADC, and deliver the tool and
documentation, including the analyses performed. The training material (CDRL

A006) was delivered also. The AMT User's Manual (CDRL A012) provides examples

from operating the AMT.

3-17

tU

I.-

SECTION 4

AMT DESCRIPTION

S 4.1 OVERVIEW I-

The AMT is a system to be used in support of the quality assurance function

during software development and maintenance. Four types of users are

envisioned for the system, a customer or user of a software system to be

developed, a quality assurance analyst, the software development project

manager, and a software researcher. The objective of the system is to provide

quality assurance information to these users in the form of software quality

metrics.

The system provides five major services to accomplish its function of

providing software quality metrics to its users.

* Automatic Metric Collection -V

e Manual Metric Collection

* Storage and Retrieval

s Report Generation

e User Messages

In order to support these services, the subsystem design shown in the

functional block diagram in Figure 3.4.1-1 was developed. The major functions
are:

* Executive Services (EXS)

o Database Management Services (DMS)

a Automatic Measurement Services (AMS)

* Report Generation Services (RGS)

The relationship between the services provided by the AMT and the functional

areas is shown in Figure 4.1-1. The following paragraphs describe each of the

functional areas. Detailed hierarchy charts of each subsystem are contained

in the System/Subsystem Specification (CDRL Aog).

4-1
S

FUNCTIONAL AREAS

User
Services EXS DM5 A?4S RGS

Auto. Metric x x
Collection

Manual Metric X x
Collection

Storage and X X
Retrieval

Reports X x X

User Messages x

Figure 4.1-1 Services Provided By Functional Areas

4-2

4
4.2 EXECUTIVE SERVICES

- The function of the Executive Services (EXS) is to provide the interface

between the user and the AMT. Thus, EXS interprets the user commands and

performs all the necessary calls to other AMT functions to actually carry out -.

the actions indicated by the user with his command. The EXS monitors system

status and reports all errors trapped by itself or any other subsystem. Built

in debugging functions which allow a user/programmer to trace real-time

program execution are also controlled by the EXS. The EXS queries for

complete command information and also provides user 'help' information.

4.2.1 COMMAND LANGUAGE

The command language processed by EXS is as follows:

CR Carriage Return

Responds with prompt.

CREATE databasename

Creates a file for storing worksheet data. Uses system file

manipulation routines.

DELETE Modulename

This command deletes a module from the current database

E Exits the user from the current task. S

END Terminates AMT session. Closes all open files prior to termination.

ENTER modulename S

Used to identify new modules for which data is to be stored in

current data base.

GET worksheet number [sectionnumber] [itemnumber] [modulename] S

Retrieves items currently stored in data base. Retrieval is based on

individual items, sections from a worksheet, or an entire worksheet.

For worksheets that are at module level, module name must be

specified.

4-3

....

~-UF

HELP [commandname]

Provides text which explains syntax of each command and function.

Without command name, it provides list of available commands.

MEASURE sourcefilename modulename

Causes automated source code metric collection to be initiated using

the source code in sourcefilenamefile. Data collected is stored in

appropriate worksheet for module name.

PUT worksheetnumber [sectionnumber] [itemnumber] [modulename]

Allows storage of values in the database. The system prompts

operator for value or values by placing worksheet identifying phrase

or question on terminal. Prompts are for individual items, or for

each item within a whole worksheet. For worksheets that are

organized by module, the modulename must be entered or if it is not

entered, a prompt requesting it is displayed. V

REPORT reportname [Printer]

Generates the report requested. The reports are presented at the

terminal. Certain reports require further input and the operator is

prompted for further input.

SET databasename

The data base for subsequent commands to interact with is identified

by this command. Only one database may be processed at any one

time. A SET command supercedes previous SET'S. The data base had to

have been created for the SET to work.

[] indicates optional data

4.2.2 GENERAL CONVENTIONS FOR ENTERING A COMMAND

When entering commands and keywords the user need only type the first three

characters of the command name, e.g., CRE for CREATE. the one exception to

the rule is the worksheet numbers, for which four characters are required

i.e., WS2A and WS2B for worksheet 2A or worksheet 2B.

4-

4-4

0 l

The various parts of a command must be separated by one or more spaces i.e.,

CRE PROGI. For commands that have parameters the user may type Just the

command name followed by a carriage return. The AMT will prompt the user for

the necessasy parameters. For example, when CRE is entered AMT prompts with

ENTER DATABASE NAME: Each command or command part must be terminated with a

carriage return.

~ When entering responses to the Yes/No questions a "Y" may be typed for "Yes", •

and "N" may be typed for a "No". Not applicable responses must be indicated

by entering "NA".

4.3 DATA BASE MANAGEMENT SERVICES 1

The Database Management Services (DMS) provide for the storage and retrieval

of raw metric data. The ability to create, open, close, and expand AMT data

bases is also provided by this subsystem. While individual data base items

can be referenced, the data structure used most often by DMS is the S

worksheet. This implementation provides rapid and efficient access to the

data base entries and their values. System dependent functions such as file

handling and disk access are isolated in the Utilities Subsystem (UTL).

4.3.1 DATABASE DESIGN

The worksheet oriented organization of the metrics. The worksheets are

defined in the Software Measurement Manual [MCCJl9]. Samples are in Appendix

A. S

The logical structure of the data base is described in Figure 4.3-1. A

separate data base is maintained for each system entered by a user or users of

the AMT. Logical records correspond to worksheets, with two distinguished

worksheets (1 and 2a) for which only one copy each exits. This is because

these worksheets are system level and refer to all modules. Multiple copies

of worksheets 2b and 3 are provided since these correspond to module level

metrics. Reference is made by worksheet number, section number and item

number and, in the case of worksheets 2b and 3, by module name.

4-5

Individual worksheet data items occur as elements of an array associated with

each worksheet/logical record. Logical records are linked by number to a

particular module name, the module names are kept in a list which is physically

stored at the beginning of the data base file. The prototype version of the

AMT has a limitation per data base of 50 modules. The system organization of

the data base using the GCOS file management system is shown in Figure 4.3-2.

The logical record number of a particular module's worksheet is thus calculated

by finding the corresponding entry number of the module in the module name list

and adding an offset number (which is implementation dependent). Particular
data items can then be obtained by using the array index associated with the

item. Array indices for a particular data item in a worksheet are stored in a

pointer table which is indexed by the triple (worksheet number, section number,

item number). This table is pre-defined and is stored as a DATA statement (see
Figure 4.3-3). A more complete description of the data base implementation is

* in the AMT Data Base Description document (CDRL AOll). p

Raw metric data is stored in the data base in two ways. First, it can be

* stored manually by the user. The user can enter module names using the ENTER

command. This command enters the module name in the data base and reserves a p

designated area for storing worksheets 2b and 3's data for that module. The
user can also enter metric raw data from one of the worksheets by using the PUT

command. The PUT command can be used to prompt the user for one of the data
items in a section or a worksheet or it can be used to enter one specific value

individually.

These metric values are calculated each time a user tries to generate reports.

* This recalculation of the metric values is performed to insure current values.

The slight processing overhead is considered worth the L:nefit of currency.

The metric values calculated are stored in local arrays. The system level
metrics are in single dimension arrays while the module level metrics are in

two dimension arrays. This physical and logical structure allows for the
processing flow within AMT to be as shown In Figure 4.3-4. The reason raw

metric data is maintained instead of just the calculated metric values is to
*; allow researchers to change the calculations of metrics to investigate other

algorithms.

4-6

I

1 DATA MANAGEMENT SERVICES (DMS) -.

LOGICAL DESCRIPTION OF DATABASE

--

L"V

M L MODULE NE LIST
DATA REFERENCER

3YE Y ENTRY NO./ DATA REFEEC ENTRY NO.

ANDRNUMBE

W" KST NO. ISEC. NO IEMNO

WORKSHEET 1

WORKSHEET 2a ' :

FI XED WORKSHEETAREA 6"'

WORKSHEET 2b

MULTIPLE COPY
AREA INDEXED

BY ENTRY NAME7
AND NUMBER

WORKSHEET3

"C811

SO
0]

*F

008

Figure 4.3-1 Logical Description of ANT Data Base

4-7

-.- fi

PHYSICAL ORGANIZATION OF DATABASE

MODULE NAME
LISTI

FIXED LENGTH
RECORDS

__ _ _ __ _ _ __ _ _ _ _ _0-

WORKSHEET 1

FIXED WORKSHEET
AREA

WORKSHEET 2a

4 U

WORKSHEET 2b
MODULE 1 9

WORKSHEET 3
MODULE 1 VARIABLE COPY

AREA INDEXED
BY MODULE
ENTRY

WORKSHEET 2b
MODULE 2

1079

Figure 4.3-2 Physical Organization of Data Base

4-8

4

viv

-II

4-9-

~0

: ~Al

-,

-

~-*%

~N.%,

-.

A ~

*
I

Id.

~
mz~

-~

-
=0

*

zo

z A

0

* I I It:
z ~

~2. 3
-v

z
b.

iT
=z

I

I..

In

I-i

~
-

g

U

U
0
I. S

z

z

A - A

U-

L

N

III ~!
-A
-=

4-10
N

U

4.3.2 FILE SPECIFICATION CONVENTIONS

To utilize a data base of metric information within the AMT, the CREATE and

SET commands are used. When using these commands the user is interfacing with

the AMT data base. The AMT takes the character string the user enters as part -.

of the CREATE of SET command and appends .DAT to it. For example:

CRE TEST
I,

* creates a data base file called TEST.DAT. At other times, the user may want

S to interface with a file other than an AMT data base. An example is the -

MEASURE command. In this situation the AMT accesses a file which has source

code that is to be analyzed by the AMT parser and Automated Measurement

Subsystem. That file was established using the system editor and file

management system. In this case, the user must specify the full filename of U

the file containing the source code.

For example:

MEASURE PROG1.CBL MODI

accesses a file called PROGI.CBL which contains the COBOL source code for U

MODl. The user should be aware of the file specification/naming conventions

and file maintenance procedures of the computer they are using to run AMT in

order to name and maintain the AMT files.

4.4 AUTOMATED MEASUREMENT SERVICES

The amount of data that can be automatically collected is limited to data that

can be derived from machine readable sources such as design materials

generated on the computer and the actual source code. This paragraph

describes the current automatic data collection capability of the AMT.

The current version of the AMT automatically collects and stores raw data from

COBOL source code. The remainder of the raw data required to calculate the S

metrics must be manually collected.

4.4.1 AUTOMATED MEASUREMENT OF SOURCE CODE

Currently the AMT collects data from COBOL source code for individual S

modules. A total of 25 different measurements are collected automatically.

These measurements can be divided into the following broad classes:

4-11

1. Counts of total number of code statements and comment statements;

2. Counts for individual types of statements e.g., input, output, exit,

entry, declarative, etc,;

3. Counts of different types of branching statements both conditional

and unconditional; and

4. Counts of operands and operators, for use in calculating Halstead's

measure.

The specific data items automatically collected are shown in Table 4.4.1-1.

Also noted in the table is the entry on the worksheet that this item relates
to and the metric that it helps calculate. The worksheet entry is identified

i by worksheet number (WS3), section number (SI), and item number (Il). Thus a

notation such as WS3, SI, II is read as worksheet 3, section I, item 1.

This automated support accounts for 25 of the 92 worksheet 3 data items, or

27% of the measurements required at the implementation phase of a V

development. These 25 data items help calculate 9 of the 38 metrics related

to implementation, or 24% of those metrics. The metric calculation is

described in paragraph 4.5, Report Generation.

The automated data collection is performed by the Automated Measurement

, Services (AMS) and the Preprocessing Services (PPS) subsystems. The user

invokes these subsystems using the MEASURE command. The Preprocessing

Services uses an LL(l) generalized parser to decompose the COBOL source code

contained in the file identified by the MEASURE command. The result of the

parsing is a parse tree representation of the source code. A description of
the parser, which uses a Backus-Naur-Form description of COBOL grammar, is in

the AMT System/Subsystem Specification document (CDRL A009).

The Automated Measurement Services subsystem traverses the parse tree and

counts the various data items and enters them in the data base. More detailed

descriptions of the design of these subsystems are in the Design Plan, CDRL

AOO.

4-12

A 0

c ! C
'A 4141 4 .

4J~~ ~ 41 41' 41414a 410

C . J 41 4a wJ UJ 061 10

V 0W 44 q1-

4J 41 . 4J QP . 4 4) 41 4w *..I In 4u I4 4
01 1M0 (M C 47 j4 nC CM Cn 414141A VI 0144 C .- *

C1 - - .- C 2

41r .- 01- w1 u1 01, on jA ' n 1 C 0 1

10 'a .0 .(I

x- N

.C S. -1 - - - - - - - - -
A 4 V CAin i V U-, Le) t^ in n L, (A L40) 4n inV I 4A (A V) Q, 10 (A I

L* I 4n a ^ A) CA a) vs a) a aA L. (A f. a

c Ca

41 4AW

411

w CL

36 c

U'J1 41 4. D.CL 'AWcu 4. oI in. wo
-~~ UIIU 41 A141

60 #A.C 'a C, in -m0 4
C C 241 4.& ou 4a 41 C6 4

(M -aJ Il u0 8 s. 1 VI c UIJ VI j

20 IA 0. uJ -
4- 414 4- 4

1
Q V.. 0- 4- 4 V 4.1

41 -004 C4 4~
ck.1 C~ ev C4C4 C

U ~ ~ . - 0.1 4 013

The significant aspect of this approach is that other language grammers can be

described to the parser, a scanner developed, and the parser will produce a

parse tree representation of the other language. With careful attention paid

to the token representation, the AMS will be able to process this parse tree

representation of the other language with little or no modification.

4.4.2 AUTOMATED AID TO MANUAL MEASUREMENT OF METRICS

* Paragraph 4.4.1 described the 25 measurements that are automatically collected

by the AMT. There are 31 measurements during requirements, 173 during design,

and 67 during implementation that are not currently automatically collected.

The AMT does provide some automated support to their collection and storage in

a data base.

The AMT will automatically generate worksheet forms which must be filled out

by an analyst/inspector. These worksheets can be printed with any current

data that exists in the data base displayed. This is particularly useful for

worksheet 3 which will be partially completed automatically by the AMT when

the MEASURE command is used.

The AMT also provides the PUT command that facilitates the user entering data

into the data base. The PUT command is described in paragraph 4.3 and in the

AMT Users Manual (CDRL A012).

The standard procedure for using the AMT to assist in manual collection of

metric data is as follows:

(1) The appropriate worksheet will be printed at the terminal. This

worksheet will be the data collection form for the inspector's use.

(2) Reference should be made to the Metrics Enhancement Final Report

[MCCJ79VolI1, Software Quality Measurement Manual [MCCJ79VoIII], and

the AMT User's Manual [CDRL A012]. These references provide a

description of the metrics, the worksheets, and how they can be used

in context of the AMT respectively. The AMT User's Manual provides a

copy of each worksheet (Appendix C), instructions for completing the

worksheets (Appendix D), and an example of the worksheets completed

for a COBOL source program.

4-14

!-I

L1
-

(3) The appropriate source material should be gathered. For example, the

Requirements Specification is the source material for worksheet 1.

(4) The source material should be briefly read for both format and
~~content. -

(5) A detailed analysis of the source material should then be conducted

using the questions on the worksheet as directed inspection of the

source material.

(6) Once all questions are answered, then the inspector should document

any overall observations that might be made based on the inspection.

(7) The answers to the worksheet questions should then be entered into

the AMT data base using the PUT command
-S

This standard procedure will become routine with application experience. This

is especially true if the experience is gained in an environment where the

documents prepared follow a consistent format or are prepared according to the

same military standard. In these cases, the information sought as a result S

of the worksheet questions typically will be in a certain section of the

document.

This general approach provides the inspector a framework in which to inspect "

material, specific questions to answer, and a directed sequence to follow.

This consistency and quantification in the inspection process enhances the

consistency between inspectors and makes the process more repeatable and

consistent between applications. These benefits provide better inspection S

results, more feedback to the developers and management, and therefore aid in

achieving a higher quality software product.

4.4.3 USE OF OTHER AUTOMATED TOOLS O

The AMT was developed with the concept of eventually interfacing it to other

software tools in a software development environment. The interfacing would

be done by extracting metric data available from the processing done by the

other tools and inserting the data into the AMT data base so metrics could be

calculated.

A program would have to be written which extracts the appropriate data from

the output file of a tool and using the AMT PUT command, inserts it into the

data base. Potential tools that should be considered are Reouirements

4-15

K .: • ° • - . . -_ _ _ _ - , -- - - -' - - - .

Specification Language processors/analyzers, Program Design Language

Processors/analyzers, code auditors, code instrumentors, and configuration

management tools.

4.5 REPORT GENERATION SERVICES

The Report Generation Services (RGS) provides the user the ability to generate

various reports that reflect the contents of a database. Nine reports may be

requested by the user to display the metric data in a variety of formats, and

by performing additional calculations, present various forms of data both at

the module and system levels. The processing that is done is shown in Figure

4.3-4. Basically, data is extracted from the data base to calculate metric

values. The algorithms for performing these calculations are contained in the

Report Generation Services routines. These algorithms are defined in the

Metrics Enhancement Final Report [MCCJ79] and in the Program Specification

Document (CDRL AOlO). Samples of these reports are included in the Users

Manual and in Appendix A. Brief descriptions follow:

4.5.1 MODULE REPORT

This report displays the catalog of modules that have been entered into the

database. It provides a status report on the database.

4.5.2 METRIC REPORT

This report calculates the value of each metric catagorized by factor and by

development phase. This report is used to determine a total picture of the

project as measurements are taken.

4.5.3 EXCEPTION REPORT

V; The exception report delivers the relationship of each module to a given

threshold value of a particular metric. The relationship (less than, equal

to, or greater than) and the threshold value is input from the user. This

report can be used to identify modules whose scores do not meet a certain

threshold, identifying them as potential problems.

4-16

- • 4.5.4 QUALITY GROWTH REPORT

When the user wishes to track the value of a particular metric over time, the

Quality Growth Report will furnish a tabular display of the scores of a
selected metric over the phases of the project. This report is used to track -*

a particular metric through a project to see how its value changes.

4.5.5 NORMALIZATION REPORT

The Normalization Report provides the user with the overall rating of a

selected quality factor. A series of regression equations are displayed which

have been empirically derived from research. The current metric values are

substituted in the equations and a rating for the selected quality factor is

calculated. Regression equations exist for the quality factors Reliability, -"

Maintainability, Portability, and Flexibility only. The normalization

function is calculated at a module level.

4.5.6 STATISTICS REPORT

The Statistics Report provides a profile of COBOL constructs for each module.

4.5.7 SUMMARY REPORT

The summary report provides a summary of the metric scores for all of the -.

modules in the system.

4.5.8 WORKSHEET REPORT

The worksheet report displays the raw data entered in each worksheet. It g

represents the current values in the database. It is used to verify and track

data entry.

4.5.9 MATRIX REPORT

This report displays the average and standard deviations for all metrics

values for all modules. This report displays all of this ;nformation in a
matrix form allowing the user to easily identify modules with metric scores

that vary from the system average.

4-17

+ , ,"

7 J

4.5.10 REPORT SU1MMARY
The reports may be classified as to their primary use:

* Descriptive -

* Historical :
* Diagnostic

The reports that are descriptive are the Summary, Matrix, Module, and Metric -

reports. Their common characteristic is that they report data in a format

implying no judgements concerning the data. The Summary Report reports all

metric scores for each module or for all the modules. The Matrix Report

displays the mean and standard deviation of the modules for each metric. It

is a good snapshot of the data in the data base. The Module Report is meant

for operational personnel. It reports those names of the modules which are in

the data base. The Metric Report is a more detailed output which displays the

metric values for each module in a detailed form.

The Historical Reports are the Quality Growth and Worksheet Reports. The

Quality Growth report provides the quality trend of a module through the

development phases. The Worksheet Report gives a very detailed display of the

raw data before it is transformed into metric scores. It's main use is to

track data entry and updates.

The Diagnostic Reports are those that identify potential problem areas. They

are the Normalization, Exception, and Statistics Reports. The Normalization
Report applies the regression equations derived from research to metric values

related to the quality factors of flexibility, maintainability, portability,

and reliability at the module level. These regression equations have been

*developed through examination of previous projects.

Regression equations for the remaining quality factors have not been

established. The Exception Report provides a comparison of the metric scores

with predetermined, user supplied values. The Statistics Report gives a

diagnostic snapshot of any module. These data may be used to evaluate

standards or identify potential problem areas.

i

t" 4-18

The typical use of these reports is described in Table 3.3-3. The table

identifies what type of support each report offers different job functions.

Additional reports can be added with relatively minor effort. Reference to --

the report would have to be added into the Executive Services processing and a
report routine written using the GET command to extract appropriate data from

the data base. Reference should be made to the AMT Maintenance Manual (CDRL
A013) and the AMT Program Specification document (CDRL AOO) for further

insight into the modifications necessary to write a new report.

1

i

4-194

S

SECTION 5

RESULTS OF QUALITY METRIC EXPERIMENT

b 5.1 INTRODUCTION -6

The software quality metrics concepts were applied during the development of

* the Automated Measurement Tool. This is the first formal application of the

software metrics defined in [MCCJ77A] and therefore viewed as an experimental

demonstration of the metric concepts. The purposes of this application of the

metrics were:

(1) Provide additional experience with applying the metrics and

validating their utility. An added benefit of this experience is

that the application of the metrics was in-line with the development

effort and not after the fact as past applications have been.

(2) Provide quality assurance feedback to the development team and the

RADC project engineer. The application of the metrics was planned as "

a complement to the planned testing to insure production of an

effective software product.

(3) Meet the quality requirements identified in the statement of work.

Some specific qualities were identified as being important to the AMT

development and the metrics were applied to provide some assurance

that emphasis was placed on their inclusion.

(4) Provide an experimental basis for generating suggestions on how to

best use the metrics in a contractual environment.

This section describes the approach to performing this experimental

application of the concepts, the results achieved, and lessons learned.

This section has the following organization. Paragraph 5.2 describes the

quality goals identified for the contract. Paragraph 5.3 describes the

process followed in applying the worksheets during the development.

Paragraph 5.4 describes the results of the application of the metrics in terms

of scores achieved, observations made based on the scores, assessment of the

metrics, calculations of the normalization functions, and comparison of the

scores with the goals established. Paragraph 5.5 compares the metric values

achieved during the AMT development with those observed in past experiences. w

Paragraph 5.6 summarizes the lessons learned from the experiment.

5-1

5.2 QUALITY GOALS FOR THE AMT DEVELOPMENT

5.2.1 STATEMENT OF WORK RELATED QUALITY GOALS

A high level statement of the quality goals of the AMT development was -6

mentioned in paragraph 4.1.1.3 of the statement of work.

The quality factors portability, flexibility, and interoperability were

identified as important to the AMT product. Portability was important because -0

the system design must consider four different target environments:

H60OO/GCOS, H60OO/MULTICS, PDP 11/70 UNIX, and IBM 370/OS.

Flexibility was important because a subset of the entire set of metrics will

initially be automatically collected. The system may be extended in the

future to collect a larger subset. Interoperability was important because a

number of new or existing software tools may be interfaced with the system.

5.2.2 SPECIFIC QUALITY GOALS ESTABLISHED

To establish more specific goals against which to measure the development

effort, the Software Quality Requirements Survey Form, shown in Table 5.2.2-1,

was completed by a representation of RADC, USACSC/AIRMICS, and the development

team. A form of the Delphi technique was used in that each individual

completed the form and then in a group session agreed to a priorized list of

the quality factors important to the AMT development. The quality goals

decided upon are identified in Table 5.2.2-2.

The first six factors: Portability, Flexibility, Reusability,

Interoperability, Correctness, and Maintainability were especially emphasized

in the experiment since they were ranked highest.

Additionally, specific ratings for four factors and for several metrics were

established. The ratings, shown in Table 5.2.2-3, were established based on

4 previous experience and are set at the specific levels indicated as part of

the experiment. The previous experience refers to the validation efforts

conducted under preciously funded research efforts. The Software Quality

Measurement Manual [MCCJ79] provides additional guidance on certain metrics

* and normalization function thresholds.

5-2

I

____ ____ ____ _ __ _ ~. 7

Table 5.2.2-1 Software Quality Requirements Survey Form

1. The 11 quality factors listed below have been isolated from the cur-
rent literature. They are not meant to be exhaustive, but to reflect
what is currently thought to be important. Please indicate whether -e
you consider each factor to be Very Important (VI), Important (),
Somewhat Important (SI), or Not Important (NI) as design goals in the
system you are currently working on.

RESPONSE FACTORS DEFINITION

CORRECTNESS Extent to which a program satisfies its
specifications and fulfills the user's
mission objectives.

_ _ RELIABILITY Extent to which a program can be expected
to perform its intended function with

,,,required precision.

____ EFFICIENCY The amount of computing resources and code
required by a program to perform a function.

INTEGRITY Extent to which access to software or data
by unauthorized persons can be controlled.

USABILITY Effort required to learn, operate, prepare
Input, and interpret output of a program. 9

MAINTAINABILITY Effort required to locate and fix an error
in an operational program.

T-STABILITY Effort reqired to test a program to insure
it performs its intended function.

FLEXIBILITY Effort required to modify an operational
program.

PORTABILITY Effort required to transfer a program from
one hardware configuration and/or software
system environment to another.

REUSABILITY Extent to which a program can be used in other
applications - related to the packaging and
scope of the functions that progria perform.

INTEROPERABILITY Effort required to couple one system with
another.

2. What type(s) of application are you currently involved in?

3. Are you currently in:

1. Development phase
2. Operations/Maintenance phase

4. Please indicate the title which most closely describes your position:

1. Program Manager
2. Technical Consultant
1. Systems Analyst V
4. Other (please specify)

12 5-3

m1. In--,nnnmlI 11mllll
um

Iiii II _

Table 5.2.2-2 Quality Requirements for AMT (In Order of Ranking)

FACTOR CONSIDERATION

PORTABILITY (VI) Targeted for IBM 370, H6000, PDP 11/70.

FLEXIBILITY (VI) Tools to be added and capabilities enhance.

REUSABILITY (VI) In transporting to other environments and
languages, want to reuse as much software as
possible.

INTEROPERABILITY (I) Software tools to be interfaced with.

CORRECTNESS (1) Utility of AMT depends on its functioning
correctly.

.3,
MAINTAINABILITY (1) May eventually be maintained by personnel

other than developers.

RELIABILITY (SI) Accuracy of metric counts and quality rating
calculations important.

USABILITY (SI) To be used by managers and QA analysts.

TESTABILITY (SI) The correctness of the metric data collection
must be demonstrated.

INTEGRITY (NI) The security of the data base is not really U
critical.

EFFICIENCY (NI) Processing efficiency not critical. N

Where VI is Very Important
I is Important
SI is Somewhat Important
NI is not important

I

5-4 I1

II

b: " "54

*1p

I' I ' 1 ' ° I i i l Ii •2

Table 5.2.2-3 Specific Quality Goals

FACTOR RATINGS AMT C_ MIS

. Flexibility .7 .4 .4

r Portability .75 NM .6

Maintainability .7 .33 .20

Reliability .9 .g8 .92

METRIC THRESHOLD VALUES

MO.2 Modular Implementation Measure .7 -

GE.2 Generality Checklist .35

SD.I Quantity of Comments .2

SD.2 Effectiveness of Comments .40

SD.3 Descriptiveness of Implementation Language .50 -3

MIAl Machine Independence Measure .2

CS.l Procedure Consistency Checklist .6

SI.l Design Structure Measure .75

SI.3 Complexity Measure .23 "

SI.4 Code Simplicity Measure .50

CO.1 Conciseness Measure .90

NM - Not Measured

5'

5-5

S

The values selected for Flexibility (.7) and Portability (.75) are above

industry average since they were identified as very important for the AMT.

The value for Maintainability (.7) was selected at what is considered the

industry average because it was identified as important. The value for -.

Reliability (.9) was identified as below the industry average since it was

identified as only somewhat important to the AMT. The values we experienced

on previous studies are also indical.ed in Table 5.2.2-3. These values were
measured in a Command and Control (C 2) environment and a Management

Information System (MIS) environment. Because of the nature of the C2

application and the fact that the MIS system was a production system, the

values for Reliability were higher for those systems than for the AMT.

The Metric values identified likewise were drawn from previous experience and

depending on whether the quality factor they related to was considered

important or not to the ANT, their values were set. The AMT scores as well as

a discussion of the threshold values set and how they compare to previous

experience is in paragraph 5.5.

5.2.3 APPLICATION METHODOLOGY

The procedures we used to apply the measurements to the ANT development are

essentially those described in the Software Quality Measurement Manual

[MCCJ78]. Those applied are briefly highlighted here:

(1) Established Quality Goals (see paragraph 5.2.2)

(2) Applied Worksheet 1 to the informal Requirements Specifications that

were generated at the outset of the project.

(3) Applied Worksheet 2a to the Design Document at the system level.

(4) Applied Worksheet 2b to the Design Document at the module level.

This application was made at the beginning of the implementation of

each increment because it was at that point that the detailed designs

of the modules in that increment were set.

5-6

-

(5) Applied Worksheet 3 to the code.

(6) Metric scores were calculated from the worksheets.

(7) Observations or analyses based on the worksheet data and the metric

scores were documented (see paragraph 5.4).

(8) Where normalization functions existed, they were calculated.

(9) The worksheet data, metric scores, documented observations and

quality ratings (calculated normalization function) are presented in

this report.

(10) Where possible, automated tools were utilized to apply the metrics.

Tools considered for use are identified in Appendix D.
-Ug

5.2.4 DESIGN AND IMPLEMENTATION GUIDELINES

Based on the identification of certain quality factors as goals for the

development, some specific practices were identified for the development team

to follow. These guidelines are identified in Appendix B. These guidelines S

were derived from experiences in transferring PDP FORTRAN code to H6000

FORTRAN code, and from transferring code from the H6000 to an IBM 370.

5.3 APPLICATION OF WORKSHEETS

The worksheets that are part of the Software Quality Measurement Manual

[MCCJ79] were the major vehicle for applying the measurements during the AMT

development. Figure 3.3-1 illustrates the timing of their application. Note

that worksheet 1 was applied to the draft Requirements Specification that was 5

written in December 1979. That specification was not a formal deliverable of

the contract. Worksheet 2a was applied to the Design Plan (CDRL AO01).

Worksheet 2b was applied to the HIPO diagrams and Program Design Language

description of each module in the Design Plan. The worksheets were applied at

the initial phases of each subsystem as it was being developed. This timing

was chosen because at that time the POL's and data definitions were refined

and were the driving documents of the implementation. It was at that time

that identifying quality problems had the most positive impact.

5-7

JS

Worksheet 3 was applied at the latter stages of each incremental development

phase, when the source code was complete. Had an automated tool been

available the measurements would have been taken several times during the

implementation.

Worksheet 1 and 2a, as completed, are in Figures A-l and A-2 and an example

worksheet 2b and 3 are in Figure A-3 and A-4 in Appendix A. These latter two

worksheets were completed at a module-level.

5.4 RESULTS

The results of the application of the worksheets were reported to RADC at two

times during the project. The first time was during a review of the Design -.

Plan at RADC. The second time was at the completion of the delivery of the

AMT. The results were used by the development team thrughout the development

effort to assess the quality of their design and implementation.

The results of the application of the worksheets were analyzed at three

levels. First, some general observations were made based on the application

of the worksheets. Second, the metric scores were calculated and reported.

Third, the metric scores were compared with the quality goals for the project.

5.4.1 REQUIREMENTS AND DESIGN

5.4.1.1 General Observations At Requirements And Preliminary Design

Table 5.4.1.1-1 contains the general observations made based on the

application of Worksheets 1 and 2a. These were applied to the draft

requirements document prepared in the first month of the the contract and the

design document, which was the product of the first phase of the contract and

represents a system-level view. These worksheets and observations were made

during the design phase of the contract and reported to the RADC and

USACSC/AIRMICS project engineers at the design review.

The worksheet applications revealed that requirements dealing with such

attributes as security, error tolerance, performance, and interfacing with

other systems, had not been specified. Since security and performance were

5-

5-8

'I

, Table 5.4.1.1-1 Observations Based on Worksheet Inspection of Requirements
Specification and Preliminary Design Specification during

Design Phase of the Project

REQUIREMENTS (Worksheet 1)

- No flow of processing and decisions during that flow described
Operations concept did not really describe scenario of use

- No reliability requirements specified; error tolerance, error recovery

- No access controls required . 1
- No discussion of user interface except for command language

- No performance requirements stated

- Provisions for interfacing with other systems lacking

PRELIMINARY DESIGN SPEC (Worksheet 2a)

- No error reporting/control system in effect

- Error conditions not identified yet

- No called/call matrix for modules yet

- No estimates on run times or storage requirements yet

- No access controls provided
6,

- Other tools to interface with have not been identified

- User Manual not written yet (outline has been)

- No Test Plan yet

lip'

5

5-9

V

not major quality goals these were not considered for correction. Since
Interoperability was important to the AMT, corrective action in the form of an

analysis of how the AMT would interface with other tools was conducted. The

results of the analysis were built into the design of the Data Management

Subsystem.

The worksheet application to the preliminary design material revealed that a

call/called matrix had not been generated at the subsystem level and that
error handling in the system had not been described. Both of these

deficiencies were corrected by the time the Design Plan (CDRL AOOl) was

delivered. An update to worksheet 2a at detailed design was not done but one

was done at the end of the contract. This update included the metrics related -O

to the Test Plan and User's Manual. All worksheets have been delivered to

RADC as part of the AMT data base and as a separate document.

5.4.1.2 Metric Scores

Table 5.4.1.2-1 contains the system metric scores calculated from the

* application of Worksheet 1 and 2a. Paragraph 5.4.1.3 contains an analysis of

these scores. Only those metrics identified in paragraph 5.2 were measured.

5.4.1.3 Comparison with Quality Goals

The factors identified as very important and important were:

PORTABILITY: p

The only indicator of portability at preliminary design time is the

Modular Implementation measure (score of .57) which is average based on

past experience. Measures of the machine independence and system

independence are not made until detailed design. At the end of the
preliminary design phase of the project the design was still machine and

operating system independent.

FLEXIBILITY:

The Modular Implementation measure (.57) and the Generality of the

design approach (.43) effect the flexibility of the code. These scores
represent a slightly better than average score for flexibility according

to past systems we had measured. While these are system level metrics

I

5-10

Table 5.4.1.2-1 Metric Scores from Initial Application

of Worksheet I and 2a

REqUIRMENTS PHASE

Completeness (CP.l) .8
Accuracy (AY.1) 0
Error Tolerance-Input Data (ET.2) 0
Error Tolerance-Computational Failures (ET.3) 0
Error Tolerance-Hardware Faults (ET.4) 0
Error Tolerance-Device Errors (ET.5 0
Access Control (AC.l) .67
Access Audit (AA.l) 0
Operability (OP.l) 0User Input Interface (CM.1) 1User Output Interface (CM.2) 1
Communications Commonality (CC.I) 1

Data Commonality (DC.1) 1

PRELIMINARY DESIGN

Traceability (TR.1) 1Completeness (CP.1) .8 -Accuracy (AY.1) 0
Error Tolerance-Control (ET,1) 0
Error Tolerance-Hardware Faults (ET.4) 0
Error Tolerance-Device Errors (ET.5 0
Design Structure (S.o) .33(E.i
Modular Implementation (MO.2) .57
Generality (GE.I) .43
Module Testing (IN.l) .43
Integra sti ng (IN.2) Test Plan not
System Testing (IN.3) completed yet
Iterative Processing Efficiency (EE.2) 0
Data Usage Efficiency (EE.3) I
Storage Efficiency (SE.) 0 i
Access Control (AC.l) 0
Access Audit (AA.I) 0
Operability (OP.) 0

Training (TN.l) User manual
User Input Interface (CM.l) not written
User Output Interface (CM.2) yetCommuncation Commonality (CC.1) .5
Data Commonality (DC.l) 1

5-11

if we substitute them into normalization equations we get a rating of

approximately .25 or 4 man-days to make a modification to the system. This is

better than the specified goal of 6 man-days to make a modification (rating

.7). -.

REUSABILITY:

At the preliminary design phase of the development the indicators

available for reusability were the same as for flexibility.

INTEROPERABILITY: -

The measures related to Interoperability are the Communication

Commonality measure (score of 1) and Data Commonality measure (score of

1) during requirements and the same two (score of .5 and 1

respectively) plus Modular Implementation (.57) during preliminary

design. The scores are high in this case because we had recognized the

requirements to build a system with which it will be easy to

interface. The primary interface will be with the data base. To

interface a tool with AMT, one must write a translation or interface

routine which takes the output of the tool and transforms it into the

format of the AMT data base. The AMT data management routines would be

available to facilitate that process.

CORRECTNESS: V

The two measures which relate to completeness at requirements and

preliminary design are the Completeness measure (.8) and the

Traceability measure (1). The Consistency measures (1) were high

because the design team agreed to a standard design notation. S

MAINTENANCE:

The Design Structure measure (score of .33), the Modular Implementation

measure (score of .57), and the consistency measures (1), relate to

maintainability. The Design Structure measure was slightly lower than

past experience has indicated it should be so we looked at it in some

detail. Several modules were being called by many other modules at

different levels of the system hierarchy. This lowered the design

structure metric score. By identifying these modules as utilities the 0

complexity of the design was decreased.

I."

i. 5-12

5.4.2 DETAILED DESIGN AND IMPLEMENTATION

5.4.2.1 Gev al Observations At Detailed Design and Implementation

The difficulty in developing software remotely in terms of turnaround and -

obtaining complete output, and the fact that we had to apply the metrics

manually to the AMT development, prevented as effective use of the metrics as

would have been desired. Timeliness is especially critical during detailed

design and implementation because in order to affect the design and 0

implementation strategies the measurements have to be available on practically

a daily basis. This was not possible. The metrics were applied once during

the detailed design (worksheet 2b) and once when the code was complete

(worksheet 3) and are reported here to provide assurance that a high quality

product was provided. The information is also valuable for future extensions,

modifications, and transporting of the AMT.

5.4.2.2 Metrics Scores •

Table 5.4.2.2-1 provides a summary of the metric scores calculated from

worksheets 2b and 3 applied to each module in the system. The scores shown

are averaged over each subsystem and over the entire system. The system

average score is calculated by taking the sum of each subsystem average score S

multiplied by the number of routines measured in that subsystem and dividing

this sum by the total number of routines in the system. The measurements are

taken from 58 modules representing over 12,000 lines of code. The breakdown

of modules by subsystem is: S

Executive Services Subsystems (EXS) 11
Automated Measurement Subsystem (AMS) 4
Data Management Subsystem (DMS) 12
Utilities Subsystem (UTL) 7 e'
Report Generation Subsystem (RGS) 24

Not included in the measurements is the Preprocessing Subsystem (PPS) which

includes the parser. This was existing code and the metrics were not applied

to it during the AMT development.

Individual module scores were available through the Metrics Report and also

through the Matrix Report. Analysis of these scores are in the following
V

paragraph.

5-13

Table 5.4.2.2-1

Implementation Metric Scores

METRIC SUBSYSTEM AVERAGE SCORES SYSTEM

At4S EXS UTL ~DMS RGS AVERAGE

ACCURACY AY.1 0 .27 .14 .17 .46 .29 "
CONCISENESS CO.1 1. 1. 1. 1. .99 .996
COMPLETENESS CP.l .25 .56 .38 .38 .75 .25

PROCEDURE CONSISTENCY CS.1 .5 .73 .57 .58 .96 .76

DATA CONSISTENCY CS.2 .25 .7 .29 .29 .48 .39
ITERATIVE PROCESSING EFFICIENCY EE.2 .5 .55 .14 .92 .42 .51

DATA USAGE EFFICIENCY EE.3 .46 .65 .45 .55 .67 .59

ERROR TOLERANCE CONTROL ET.1 .75 .54 .43 .83 .96 .77

ERROR TOLERANCE INPUT DATA ET.2 0 .38 .19 .17 .29 .25
ERROR TOLERANCE COMPUTATION ET.3 .08 .15 .07 .12 .01 .07

DATA STORAGE EXPANDABILITY EX.l 0 0 .14 .08 .21 .12
COMPUTATIONAL EXTENSIBILITY EX.2 0 .05 .07 .08 .04 .05

IMPLEMENTATION GENERALITY GE.2 .63 .73 .54 .83 .77 .74
MACHINE INDEPENDENCE MI.1 .74 .88 .63 .84 .89 .84

MODULAR IMPLEMENTATION MO.2 .31 .46 .38 .34 .36 .37 S
QUALITY OF COMMENTS SD.l .43 .37 .71 .59 .36 .46

EFFECTIVENESS OF COMMENTS SD.2 .45 .60 .44 .58 .63 .58

DESCRIPTIVENESS OF LANGUAGE SD.3 .75 .91 .71 .92 .96 .9

DESIGN STRUCTURE SI.1 .45 .63 .45 .63 .63 .59
COMPLEXITY SI.3 .09 .12 .02 .09 .17 .12 .

CODE SIMPLICITY SI.4 .49 .62 .43 .69 .61 .6
SYSTEM SOFTWARE INDEPENDENCE SS.1 .25 .36 .33 .29 .48 .38

TRACEABILITY TR.1 0 .18 .14 0 .04 .07

.1,... '"5-14

5.4.2.3 Comparison With Quality Goals

Table 5.4.2.3-1 compares the subsystem and system average metric scores with

the metric scores identified in Table 5.2.2-3. These metric scores were

identified at the beginning of the project as goals the development team would

attempt to meet. The values chosen, threshold values, were chosen because

they represent either average or above average scores for those metrics based

on past experience. They were not contractual requirements but were set as

quality goals against which to assess the software development.

In most cases, the threshold values were met or exceeded providing some

confidence in the quality of the software product. There were a few

exceptions. The modular implementation metric (MO.2) is currently measured
differently than previously specified. The modular implementation measure

(MO.2) during past studies included the following measurements:

* Module size in lines of source code (1 if less than 100, 0 if greater V

than 100)

* Number of parameters which are control variables divided by number of

total calling parameters.

* Input data controlled by calling module (I if yes, 0 if no)

* Output data controlled by calling module (I if yes, 0 if no)

* Control returned to calling modulue (1 if yes, 0 if no)

e Is temporary storage shared by call/called modules (1 if no, 0 if yes)

These measurements were added together and divided by six to get the metric

value. Two additional measurements were added to the MO.2 metric in the AMT

implementation. These were:

* 1 divided by number of elements passed as parameters that were not

variables

e 1 divided by number of parameters not defined

The new metric value is the sum of the above six elements plus the new two

measurements divided by eight. However, in taking these latter two

measurements, the code inspectors interpreted both as zero when all parameters

passed in a call statement were variables and all parameters were defined.

5-15

Table 5.4.2.3-1 Comparison of Metric Scores with Specified Thresholds

METRICS

SUBSYSTEM AVERAGE SCORES SYS SPECIFIED

AMS EXS UTL DMS RGS AVG THRESHOLD -

MODULAR IMPLEMENTATION MO.2 .31 .46 .38 .34 .36 .37 .70

GENERAL CHECK LIST GE.2 .63 .73 .54 .83 .77 .74 .35

QUANTITY OF COMMENTS SD.l .43 .37 .71 .59 .36 .46 .20

EFFECTIVENESS OF COMMENTS SD.2 .45 .60 .44 .58 .63 .58 .40

DESCRIPTIVENESS OF LANGUAGE SD.3 .75 .91 .71 .92 .96 .90 .50

MACHINE INDEPENDENCE MI.l .74 .88 .63 .84 .89 .84 .20 j
PROCEDURE CONSISTENCY CS.1 .5 .73 .57 .58 .96 .76 .60

DESIGN STRUCTURE SI.1 .45 .63 .45 .63 .63 .59 .75 1
COMPLEXITY SI.3 .09 .12 .02 .09 .17 .12 .23

CODE SIMPLICITY SI.4 .49 .62 .43 .69 .61 .60 .50

CONCISENESS CO.1 .92 .94 .98 .91 .99 .94 .90

*These values were computed manually

5-16

This misinterpretation incorrectly lowered the MO.2 metric value by two

eighths (2/8) or .25. Thus the MO.2 scores should have been .56, .71, .63,

.59, .61 for the subsystems in Table 5.4.2.3-1 respectively and .62 for the

system average. The scores still do not meet the threshold but average 69% of

* the threshold score.

The complexity measure did not meet the goal of .23 set. The logic of some of

the routines to calculate the metric scores and to parse and identify the

various constructs of COBOL is quite complicated. The average achieved, .12

is better that that recommended by McCabe [McCT] which equates to .1 in our

metric. The design structure metric (SI.l) was slightly lower, .59 compared

to the goal of .75, than the specified level.

To compare strictly using the system average is potentially misleading. The

variation between subsystems is important to look at. A subsystem average may

be quite low and in fact be a weak link, in terms of quality, within the

system. The same analogy applies at a module level. The Exception Report

provides the capability within AMT to identify those modules which are

potential problem modules. The metric which varied greatest within the system

was the complexity measure. This metric was used to monitor the development

team and help during design and code walkthroughs to control the complexity of

the design. Because the metric values were not contractual requirements,

redesign and reimplementation was not done strictly to improve the metric

value but only done when the complexity was obviously too high and would have

a major impact on the quality of the software.

At the metric level, the AMT development team met 8 of the 11 (or 73%) of the

specified goals. 5

Another view is illustrated in Table 5.4.2.3-2, where those metrics related to

each quality factor and how well the software scored in terms of either the

thresholds established or past experience is shown. In the case of metrics

for which a threshold value was not established, the metric score was compared

with past experience. The table identifies if the values achieved for the AMT

were low (L), slightly higher (M), or much higher (H) than past experience.

5

5-17

Table 5.4.2.3-2 Metric Scores Related to Quality Goals

*l CCJl
L-1-

o .o

4J 4J W.. r- V1

METIC M ~ C W-. -- Qj W

C-.04j

xRELATED u L " .

- -- f: C 0

>~U~ J LJ CA) U~ C o. CU >

RUALTN .Y. W Y 0 ' O -' -. Aj a .

-O RjABILITY NM UM W C. S

W.- U3 .' -4jC)4d f

PORRCTBILIT C Y Y Y M

-ORECTES L L- Y3* L5 35 ~

MAINTAINABILITY N Y Y Y Y L N N Y Y

I.I

Threshold Value Not Achieved

Y Threshold Value Achieved

L Score Lower than -xperience I
Base

,Scare Higher than -xoerience
Base

H Score >7uch Higher than
Experience

';ri Not 'leasured

iti
i, .. -1,

L¢ -.

Using this view, the performance of the development team, in terms of the

metrics relative to the six quality factors identified as important, can be

assessed. For example, for the quality factor, portability, four metrics

exceeded the specified threshold values, one metric for which a threshold was

not specified, scored slightly better than past experience, and only one

metric did not achieve the specified threshold value. Thus from a portability

viewpoint, five out of six (83%) of the metrics related to portability

exceeded expectations.

Using the metrics in this way, the development team could be assessed as

having met 83% (5 of 6) of their goals related to portability, 86% (6 of 7)
related to flexibility, 86% (6 of 7) related to reusability, 0% (0 of 1) for -.

interoperability, 25% (1 of 4) for correctness, and 60% (6 of 10) for

maintainability.

The NM indicator in the table identifies those metrics not measured. In most

cases, these metrics were not measured because without automated support, it

was not possible to measure them against any of the AMT source code.

In some cases, data or material was not available for measuring that

particular metric. An example of this situation is the Data Communication

(OC.l) metric. No other tool was identified to be interfaced with the AMT so

no consideration was given to how compatible the AMT data structure was with

any other tool. 0

Table 5.4.2.3-3 provides the results of substituting the average metric scores

for the system into the normalization functions. These normalization

functions, including the individual metric functions as well as the

multivariate functions, are defined in the Software Quality Measurement Manual

CMCCJ 79].

Because the Modular Implementation Measure (MO.2) was measured differently

than previous studies, a constant of .25 was added to the MO.2 metric value to

arrive at a corrected normalization function rating. This correction constant

was only used for the normalization functions that contained the MO.2 metric.

5-19

-4-

-J I
LLJU L i m i . n c C%0 0 , D-r L * - o O

CD *I
-41 1 4

00

LU

Lnn

- 0)

0 z4

0 C.0 u'1
10+

o CCV
'U0 Z -Wc~

V) V) WC' V V

'4- CV) L)
43*

0. CM~ 4m V)m

G - - to L c

0 +

Lc) + I%

L8n

L)U

9-- -J - + . * . 9 . - 4

* EU* (A '.# ~ 0L ~ 0 Lu
* 0 z ~~n ~ U) ~U)
5- 1) . -~- - - * - .- + ~ zz

o .- z5+20

-W -o

In addition a correction to the normalization function for maintainability was

made. This correction is to account for using a different complexity measure,

SI.3. In the Factors in Software Quality study [MCCJ77a], Halstead's E

measure [HALM77] was used. In the Metrics Enhancement [MCCJ79] and the AMT -.

development, McCabe's [MCCT76] metric was used. This change was not taken

into account in the normalization function documented in the Software Quality

Measurement Manual. To account for the different measure, a factor of 2.46

multiplied by the complexity measure should be substituted for SI.3 in the

normalization function shown in Table 5.4.2.3-3 to arrive at the calculated

score. In the future, the normalization function recommended is:

- .2 + 1.5M(SI.3) + .14M(MO.2) + .33M(SD.2) = rm -w

when using McCabe's metric as the complexity metric (SI.3).

The resultant ratings are compared with the established goals in

Table 5.4.2.3-3. The individual factors are discussed below.

PORTABILITY

The AMT software is considered highly portable. The system software dependent

and machine dependent software have been minimized and localized. The metric

scores for these measures and others related to Portability are all relatively

high except for the Modular Implementation Measure, MO.2.

The goal identified for portability was .75. The Software Quality Measurement

Manual states that this rating is equivalent to 1 - (effort to transfer)/

(effort to implement). Thus a goal of .75 is the same as saying the effort to

transport a module of the AMT to another system should take 25% or less of the

effort to implement that module. The score achieved by calculating the

normalization function is equivalent to the rating. Thus a normalization

function value of .9 equates to a rating of .9 and means the software can be

transported to another system in 10% or less of the effort required to

implement the software.

The multivariate function for portability and the individual normalization

functions for all but the S1.1 metric exceeded the specified goal of .75. The

5-21

portability of the AMT was demonstrated by the relative ease with which the

initial prototype version of the AMT, developed on the VAX 11/780, was

transported to the RADC H6180. The value of 1.6 should be interpreted as 1.

Because the previous effort [McCJ79] to establish beta coefficients was based -

upon a limited sample of projects and the dependent variable of portability is

somewhat illusive, the regression equations need to be adjusted to reflect a

m6re accurate representation. This will require additional portability data

from a wider range of projects to be analyzed.

FLEXIBILITY

The AMT software exhibited characteristics that indicate it will be highly

flexible. The metrics related to flexibility were all relatively high as

shown in Table 5.4.2.3-1. A generalized parser was utilized in the Automated

Measurement Services Subsystems to facilitate modifying the AMT to process

- other programming languages besides COBOL. The grammar description of COBOL

* developed was at a high enough level of abstraction to handle a wide number of

COBOL grammars while still measuring the needed characteristics to calculate

the metrics. The normalization function calculation resulted in a value of

* .56. This value relates to the average amount of effort it takes to make a

modification to the software based on a change in requirements. The

relationship is 1/.56 = the average person days to make a modification, or

1.78 person days. The rating for flexibility equals 1 - .05x(average person

days to modify). The rating therefore is .91.
S

REUSEABILITY

The software exhibited high scores for those metrics related to reuseability.

The interfaces and functional decomposition of the system are well defined to

4 facilitate reuse. As shown in Table 5.4.2.3-1 and Table 5.4.2.3-2, six of the S

seven metrics related to reuseability exceeded expectations. These

expectations were based on threshold values or past experience. In

particular, the three metrics related to comments (DS.1, SD.2, SD.3), the

* machine independence metric (MI.l), and the implementation generality metric

(GE.2), all exceeded the threshold values specified. The system software

independence metric (SS.l) was higher than the values experienced during the

Metric Enhancement study. The Modular Implementation metric (MO.2) was the

only reuseability-related metric that did not meet or exceed the threshold

value specified.

5-22

6 0

INTEROPERABILITY

While the metrics needed to assess this quality factor were not measured,

facilites to allow interfacing with the AMT were built into the system. The

PUT and GET commands can be utilized to interact with the AMT data base. They

* could be used to extract pertinent data from output of an existing software

tools and placed into the AMT data base. The only metric measured that was

related to interoperability was MO.2 which has been discussed already.

i CORRECTNESS
The metrics related to this quality factor were mixed in their performance at

best. Only one metric, CS.2, had a specified threshold value for the AMT

development. That metric exceeded the threshold. Three other metrics related

to correctness did not achieve values as high as those of past studies.

The interpretation that can be made is that the previous studies involved

taking the measurements from existing operational systems which you would

expect to be more mature, have more complete documentation, and therefore

achieve higher metric scores than the AMT.

.o
The testing process used five COBOL programs provided from a production system

at the USACSC. The Test Plan (CDRL A0015) and the Test Analysis Report (CDRL

A014) describe the test process. All planned tests except one were

successfully ac.4mplished. One functional capability not provided was the

alternate print capability.

MAINTAINABILITY

The comments, structure, implementation techniques, and control flow

complexity were controlled during the development, and these practices were

reflected in the metric scores. The normalization function using the

multiplication factor discussed previously for the complexity metric (SI.3)

and the addition factor for the MO.2 metric resulted in a value of .26. This

equates (1/.26) to an average of 3.8 person days to fix an error in the

software. The rating then is 1 - .lx (average effort to fix an error) or

.62. This is slightly lower than the .7 rating or goal specified. The

complexity of the system was slightly higher than desired and resulted in the

slightly lower rating.

5-23

I

RELIABILITY

Reliability was not a quality factor specified as critically important to the

AMT because it is basically a prototype system. However, for evaluation

1 purposes, we monitored the performance of the metric scores related to the

reliability normalization function. The calculated normalization function

value was .45. The rating is calculated by doubling this value to .9 and is

equated to 1 - (number of errors)/(lO0 lines of code). The industry average

is approximately 2 errors per 100 lines of code or .98. The .9 achieved by

the AMT development met the goal specified.

5.5 COMPARISON OF AMT METRIC SCORES WITH PAST EXPERIENCES

Table 5.5-1 provides a comparison of the average metric scores for the AMT -V

with past experiences. These past experiences include the JOVIAL Command and

Control System used during the Factors in Software Quality Contract (MCCJ77),

the Management Information System (MARDIS) written in COBOL and The Software

i Support System written in FORTRAN that were used in the Metrics Enhancement I

Contract (MCCJ79), a Data Base Management System written in JOVIAL, and a

Telemetry Prediction Simulation System written in JOVIAL. The AMT was written

in a structured FORTRAN. The annotation "NMI' in the table indicates a metric

that was not measured.

The following metrics had scores higher for the AMT than past experiences:

CO.1 Conciseness

ET.l Error Tolerance

GE.2 Generality

MI.l Machine Independence

SD.3 Descriptiveness of Language

' 1 SS.l System Software Independence ,

These metrics indicate the concern primarily for portability and flexibility

during the AMT development.

5-24

I.

Table 5.5-1

Implementation Metric Score Comparisons

METRIC ANT COBOL

AVERAGE JOVIAL MIS JOVIAL WAVIAL
SCORE C2 FORTRAN DBMS EXS

ACCURACY AY.1 .29 NM NM NM NM

CONCISENESS CO.1 .996 .78 .12 .75 .60

COMPLETENESS CP.1 .25 .92 NM NM NM

PROCEDURE CONSISTENCY CS.1 .76 .99 NM NM NM

DATA CONSISTENCY CS.2 .39 .8 .68 NM NM

. ITERATIVE PROCESSING EFFICIENCY EE.2 .51 .67 .50 NM NM

DATA USAGE EFFICIENCY EE.3 .59 .96 .85 NM NM

ERROR T'ILERANCE CONTROL ET.1 .77 .77 .NM NM NM

ERROR TOLERANCE INPUT DATA ET.2 .25 .84 .02 NM NM

ERROR TOLERANCE COMPUTATION ET.3 .07 .51 .07 NM NM

DATA STORAGE EXPANDABILITY EX.1 .12 NM NM NM NM

COMPUTATIONAL EXTENSIBILITY EX.2 .05 NM .07 NM NM

IMPLEMENATION GENERALITY GE.2 .74 .48 .35 .12 .12

MACHINE INDEPENDENCE MI.1 .84 .13 .21 MM NM

MODULAR IMPLEMENTATION MO.2 .37 .68 .71 NM NM

QUANTITY OF COMMENTS SD.1 .46 .69 .35 .38 .35

EFFECTIVE OF COMMENTS SD.2 .58 .74 .40 NM NM 1

DESCRIPTIVENESS OF LANGUAGE SD.3 .90 .82 .57 NM NM

DESIGN STRUCTURE S1.1 .59 .64 .87 NM NM

COMPLEXITY SI.3 .12 .66 .23 .10 .08

CODE SIMPLICITY SI.4 .60 .76 .57 .66 .73

SYSTEM SOFTWARE INDEPENDENCE SSA .38 .18 .01 .03 .12

TRACEABILITY TR.1 .07 1 NM NM NN

NORMALIZATION FUNCTION (ratings)

PORTABILITY 1 NM .23 NM NM

FLEXIBILITY .91 .88 .86 NM NM

MAINTAINABILITY .62 .68 .9 NM NM

RELIABILITY .9 .98 .96 NM NM

NM - NOT MEASURED

5-25

--------- -- - --

The following metrics had scores lower for the AMT than past experiences:

CP.1 Completeness

CS.1 Procedure Consistency

CS.2 Data Consistency

EE.3 Data Usage Efficiency

MO.2 Modular Implementation

S1.1 Design Structure

TR.l Traceability

These metrics indicate a lesser attention provided to characteristics related

to correctness and reliability. The scores of the AMT metrics were not low in

the absolute sense but were lower than those achieved in the command and

control software and other contract deliverable software. This is
" understandable considering the AMT is a prototype research tool. Also shown

in the table are the ratings achieved for the four factors that have

established normalization functions. The relative ratings for the Factors in

*: Software Quality (FSQ) study, the Metrics Enhancement (ME) study, and the

*i Automated Measurement Tool (AMT) development for these factors were (from high

to low):

PORTABILITY MAINTAINABILITY

AMT ME

FSQ FSQ 0
ME AMT

FLEXIBILITY RELIABILITY

AMT FSQ

FSQ ME

ME AMT

5.6 EXPERIMENT CONCLUSIONS

As a result of applying the metrics during the development of the AMT several

general observations can be made. First the use of the quality factors to

identify what qualities were desired provided an excellent technique for
focusing standards and conventions and the goals of the development team to p

5-26

1p

0,7- -

meet the customers requirements. Second, the use of the metrics during the

development as a development team tool as well as a mechanism for reviewing

requirements with the customer proved effective. Third, based on the metrics,

the AMT development was reasonably successful at achieving the quality goals

set at the beginning of the project. At the metric level, 8 of 11 (83%)

specified goals were met. Of the three metric thresholds not achieved, the

scores realized were 89%, 79% and 52% of the values desired. At the

normalization functon level, 3 of 4 specified goals were met. The one not met

(maintainability) was 89% of the desired value.

There were some negative aspects identified. First, the setting of the

specific quality goals was done with relatively little experience data. In

some cases, such as the modular implementation (MO.2) where the metric

algorithm changed and the goal had been set too high, the goals established

were not reasonable. The setting of goals should be carefully considered and

reviewed between the customer and development team. Second, continued

validation of the normalization functions is required. A complete validation,

i.e., statistical analysis, of the data should be performed on new sets of

data to gain more confidence in the normalization functions accuracy. Third,

considerable interaction between the customer and the development team is

needed to ensure effective use of the quality feedback provided by the

metrics. Tradeoff analyses are necessary to ensure wasted effort is not spent :

correcting deficiencies which are not important or measuring metrics which are,.

not critical. Fourth, automated support was not available and hindered the 14

effective daily use of the metrics by the development team. In general the

following conclusions can be drawn:

(1) The metrics proved to be an effective tool for setting quality goals,

identifying standards and conventions to guide the development, and

monitoring the progress toward these goals in-line with the

development.

(2) Automated tools are necessary to provided reliable, timely metric

information.

5-27

K (2) An interactive customer is necessary. More quantitative information

about the software product is available and should be used.
!-.

(4) The normalization functions need continued validation before they can

be generally used. They should be validated and tailored to specific

applications and development environments.

(5) The metrics could be utilized as a contractual instrument. The

recommendation is to use them for determining incentive or award

fees. Their use as an absolute acceptance criteria is possible but

the specific metrics and threshold values would have to be negotiated

prior to contract start. -v

5-2

5-2

SECTION 6

FUTURE DEVELOPMENT

The AMT was developed to demonstrate the concept of automated collection and

* reporting of software metrics. A minimum set of metrics are automatically

collected from COBOL source code. A fairly extensive set of reports are

* generated to fulfill the requirements of a number of personnel who might use

the AMT.

* Several areas of the AMT could be enhanced for use on an actual large scale
software development. Under the category of enhancements, the following

aspects of the AMT could be modified or added:

(1) Add a form entry system for easier manual input of worksheet data.

(2) Modify the Report Generation Services Subsystem to be more flexible

in providing user defined reports.

(3) Provide an interface to a statistical package.

(4) Interface AMT with other tools, especially tools that would support

automated measurement during requirements definition and design

phases.

(5) Expand COBOL grammar description and Automated Measurement Services

Subsystem to support additional metrics automation.

(6) Define another language grammar (eg. FORTRAN) to parser, develop

scanner and incorporate processing capability for another language.

(7) Tie AMT into Configuration Control and Error Reporting Systems or

Program Support Libraries. =

(8) Transport AMT to other computing environments.

(9) Expand data base ca . *ities beyond 50 modules.

6-1
U

SECTION 7

REFERENCES

[ALJM79] Al-Jarrah, M., et al

"An Empirical Analysis of COBOL Programs"

Software - Practice and Experience, Vol. 9, Issue No.5, May 1979.

[BASV78] Basili, V., et al

"Investigating Software Development Approaches"

AFOSR TR-688, August 1978.

[BAUF73] Bauer, F. L. (Ed)

Advanced Course on Software Engineering

Springer - Verlag, Berline, 1973.

[BOEB73] Boehm, B.

"Software and Its Impact: A Quantitative Report"
Datamation, April 1973.

[CAVJ78] Cavano, J., McCall, J.

"A Framework for the Measurement of Software Quality",
Proceedings ACM Software Quality Assurance Workshop, November 1978.

[CHER] Chevance, R. 3., et al

"Static Profile and Dynamic Behavior of COBOL Programs"

SIGPLAN, reference open.

[CONS75] Constantine, L. Yourdon, E. 0
Structured Design, Yourdon Press, N. Y., 1975.

[CULK79] Culik
"The Cyclomatic Number and the Normal Number of Programs"

ACM SIGPLAN Notices, Vol. 14, No. 4, April 1979.

[DeMR76] DeMille, R. A., et al
"Can Structured Programs be Efficient?", ACM SIGPLAN Notices,

October 1976.

7-1

. • . , .

[DEWR78] Dewar, R., Hage, J.

"Size, Technology, Complexity, and Structual Differentiation:

* Toward a Theoretical Synthesis", Adminstrative Science Quarterly,

pp 111-136, March 1978.

[DIJE69] Oijkstra, E. W.
O "NATO Science Committee Report", January 1969.

[DoDMAN] DoD Manual 4120.17-M

Automated Data Systems Documentation Standards

[DZIW78] Dzida, W., et al ".
"User-Perceived Quality of Interactive Systems", Proceedings of 3rd

International Conference on Software Engineering, 1978

[FAGM76] Fagan, M. E.

"Design and Code Inspections and Process Control in the Development

of Programs", IBM Technical Report TR 00.2763, Poughkeepsie, 1976.

[FITA78 Fitzsimmons, A, Love, T.

"A Review and Evaluation of Software Science",

ACM Commuting Surveys, Vol. 10, No. 1, March 1978.

[FLEJ72] Fleiss, J. E., et al

"Programing for Transferability"

* NTIS Memorandum AD-750 897, 1972.

[FOSL76] Fosdick, L. D., Osterweil, L. J.

"Data Flow Analysis in Software Reliability", ACM Computing Surveys

Special Issue: Reliable Software I, 1976.

[FRIR78] Fried, R.

"Monitoring Data Integrity"

Datamation, June 1978.

7-2

4 -.

[GAIE78] Gainer, E., et al

"The Design of a Reliable Application System"

Proceedings of the 3rd International Conference on Software Engineering,

C 1978.

[GELD79] Gelperin, D.
"Testing Maintainability"

ACM Software Engineering Notes, Vol. 4, No. 2, April 1979.

[GOLJ73] Goldberg, J., ed.

Proceedings of the Symposium on the High Cost of Software,

Monterey, 1973

[GORG71] Gorry, G. A., Scott Morton, M.S.
"A Framework for Management Information Systems"

Sloan Management Review, Vol. 13, No. 1, 6

Fall 1971, MIT Cambridge, Mass.

[HALM77] Halstead, M.

Elements of Software Science Elseview Computer Science Library,

New York, 1977.

[HANS76] Hantler, S. L., King, J. C.

"An Introduction to Proving the Correctness of Programs" •

ACM Computing Surveys Special Issue: Reliable Software I,

September 1976.

[HECS77] Hecht, M.S. S

Flow Analysis of Computer Programs, Elsevier North-Holland,

New York, 1977.

[HETB78I Hetzel, B.

"A Perspective on Software Development"

Proceedings of the 3rd International Conference on Software Engineering,

1978.

7-3

-

[HOAC78] Hoare, C.A.R.

"Software Engineering: A Keynote Address", Proceedings of the 3rd

International Conference on Software Engineering, 1978.

[HORJ73] Horning, J. J., Randell, B.

"Process Structuring"

ACM Computing Surveys, Vol. 5, No. 1, March 1973.

lIMP74] "Improved Programming Technologies - An Overview"

IBM TR-GC20-1850-O, 1974.

[JACM78] Jackson, M. A.

"Information Systems: Modeling, Sequences and Transformation"

Proceedings of the 3rd International Conference on Software

Engineering, 1978.

[JOHJ75] Johnson, J. P.

"Software Reliability Measurement"

NTIS AD-AO19-147, December 1975.

[KAUR75] Kauffman, R.

"COBOL/Structured Programming - Will the Marriage Survive"

Infosystems February 1975
!S

[KNUD73] Knuth, D. E.

"A Review of "Structured Programming",

STAN-CS-73-371 Computer Science Dept., Stanford University, 1973.

[KOSS74] Kosaraju, S. R., Ledgard, M. F.

Concepts in Quality Software Design

NBS Technical Note 942, Washington 1974.

[KURS75] Kurki-Suonio, R.

"Towards Better Structured Definitions of Programming Languages",

STAN-CS-75-500 Computer Science Dept., Stanford University, 1975.

7

7-4

[LIEB78] Lientz, B., et al -.

"Characteristics of Applications Software Maintenance"

Communications of the ACM, Vol. 21, No. 6, June 1978.

[MATM78] Matsumoto, M. -J

"Design and Quality in MIS Environments"

Software Metrics Enhancement Task Internal Memorandum No. 1,

August 1978.

[McCC78] McClure, C. L.

Reducing COBOL Complexity through Structured Programming

Van Nostrand Reinhold Co., 1978.

[McCJ77a] McCall, J., Richards, P., Walters, G.

"Factors in Software Quality", 3 Vols.

RADC TR 77-369, November 1977.

[McCJ77b] McCall, J., Richards, P., Walters,*G.

"Metrics for Software Quality Evaluation and Prediction"

Proceedings of the NASA/Goddard Second Summer Engineering Workshop,

September 1977. -.

[McCJ78a] McCall, J.

"The Quality of Software Quality Metrics in Large-Scale Software Systems

Development", Proceedings of the Second Software Life Cycle Management U

Workshop, August 1978.

[McCJ79] McCall, J., Matsumoto, M.
"Software Quality Metrics Enhancements" U

RADC TR 80-109, April 1980.

[McCJ78b] McCall, J.

"Software Quality: The Illusive Measurement"

Software Quality Management Conference, September 1978.

[MCCT76] McCabe, T. J.

"A Complexity Measure", IEEE Transactions on Software Engineering,

December, 1976.

7-5

4i - .

[MCKJ79] McKissick, J., et al

"The Software Development Notebook - A Proven Technique" Proceedings 1979

Annual Reliability and Maintainability Symposium, January 1979.

[MILE79] Miller, E.

"Some Statistics from the Software Test Factory"

ACM Software Engineering Notes, Vol. 4, No. 1, January 1979.

[LITB78] Littlewood, B.

"How to Measure Reliability, and How Not to..."

3rd Proceedings of the International Conference on Software Engineering,

Atlanta, 1978.

[LOVL77] Love, L. T.

Relating Individual Difference in Computer Programming Performance to

Human Information Processing Abilities, Ph.D Thesis University of S

Washington, 1977.

* [LOVT77A] Love, T.

"An Experimental Investigation of the Effect of Program Structure on U

Program Understanding", G.E. Technical Information Series TIS771SPOO6,

1977.

[LOVT776] Love, T.

"A Preliminary Experiment to Test Influence on Human Understanding of

Software", G.E. Technical Information Series TIS771SPO07,. 1977.

[LUCH741 Lucas, H. C.

Toward Creative Systems Design

Columbia University Press, New York, 1974

[LYOG78] Lyon, G.

"COBOL Instrumentation and Debugging: A Case Study" NBS Special

Publication 500-26, U.S. Dept. of Commerce 1978.

(MILSTD] MIL-STD-490

Specification Practices

7-6

.i

[MIYI78] Miyamoto, I.

"Towards an Effective Software Reliability Evaluation" Proceedings of the

3rd International Conference on Software.Engineering, 1978.

- [MYEG75] MYERS, G. S.

Reliable Software Through Composite Design

Petrocelli/Charter, 1975.

[PAND76] Panzl, D. J.

"Test Procedures: A New Approach to Software Verification" Proceedings

of the Second International Conference on Software Engineering, San

Francisco, 1976.

[PARD75] Parnas, D. L.

"The Influence of Software Structure on Reliability", Proceedings of the

International Conference on Reliable Software, Los Angeles, 1975. -

[PEDJ78] Pederson, J. T., Buckle, J. K.

"Kongsberg's Road to an Industrial Software Methodology", Proceedings of

the 3rd Internation Conference on Software Engineering, 1978. ".

(PYSA78] Pyster, A., Dutra, A.

"Error-Checking Compilers and Portability"

Software Practice and Experience, Vol. 8, Issue 1,

January - February 1978.

[RICP76] Richards, P., Chang, P.

"Localization of Variables: A Measure of Complexity", GE TIS 76CIS07,

December 1976.

[RIDW78] Riddle, W. E., et al

"Behavior Modelling During Software Design"

Proceedings of the 3rd International Conference on Software Engineering,

1978.

_ _ _ 7-7 _

________ * * - - - -F_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

[ROBL75] Robinson, L., et al

"The Verification of COBOL Programs"

NTIS Memorandum, June 1975.

[SAMS76] "Contractor Software Quality Assurance Evaluation Guide"

SAMSO Pamphlet 74-2, Los Angeles, 1976.

[STR74] "Structured Programming Series" -u
RADC, 15 Vols., 1974-1975.

[TAGW77] Taggart, W. M. Jr, Tharp, M. 0.

"A survey of Information Requirements Analysis Techniques" ACM Computing

Surveys, Vol. 9, No. 4, 1977.

[USACSCM] USACSC Manual 18-1

| Automatic Data Processing System Development, Maintenance and w

Documentation Standards and Procedures Manual.

[VINW77] Vinson, W. D., Heany, D. F.

"Is Quality Out of Control?"

Harvard Business Review, November-December 1977.

[WALG78a] Walter, G., McCall. J.

"The Development of Metrics for Software R&D"

1978 Proceedings, Annual Reliability and Maintainability Symposium,

January 1978.

4i [WALG78b] Walters, G. S

"Application of Metrics to Software Quality Management Programs", Software

Quality Management Conference, September 1978.

4 [WEGP76] Wegner, P. P

"Research Paradigms in Computer Science"

Proceedings of the 2nd International Conference on Software Engineering,

San Francisco, 1976.

7-8

-4

6 -

[WEGP78] Wegner, P.

"Research Directions in Software Technology"

Proceedings of the 3rd International Conference on Software Engineering, 6

1978.

[WIRN65] Wirth, N.

"On Certain Basic Concepts of Programming Languages"

Technical Report No, CS65, Computer Science Department, Stanford

University, 1965.

[WONG78] Wong, G.

"Design Methodology for Computer System Modeling Tools"

Symposium on Modeling and Simulation Methodology,

August 1978, Rehorot, Isreal.

-w

[YEHR76] Yeh, R. T., ed.

"Software Validation", ACM Computing Surveys, Special Issue; Reliable

Software I, 1976.

7

S

7-9

RECOMMENDED REFERENCES

VAX/VMS Cormmand Language User' s Guide - Order No. AA-D0238-TE

VAX-li FORTRAN IV-PLUS Language Reference Manual -Order No. AA-D034A-TE

VAX-li FORTRAN IV-PLUS User's Guide -Order No. AA-D035A-TE0

Honeywell TSS General Information Manual -Series 60 (Level 66)/6000

Order No. DD22

Honeywell FORTRAN Reference Manual -Series 60 (Level 66)/6000

Order No. 0G75

General Electric NED Time-Share User's Guide NEDE-21328 Class 11

____ 7-107

APPENDIX A -

SAMPLE REPORTS

A-i

K -. Pa. I

REQUIRM1ETS ANALYSIS/SYST V LEVEL NA 4+&rtN P C 0R~

I.~ C0I4PLE?-ESS (CORRECTNESS, RELIABILITY)

1.l Numb~er of major functions identified (equivalent'to CpcI). CPAl
2. Are requirements itemized so that the various functions to be per-formed, th~eir

inputs and outputs, are clearly delineated? C?.1(1)

I3. Nuber of major data references. CP.1(2) 3

4. How many of these data references aire not defined? CP.1(z) 0

5. How many defined functions are not used? CP.l(3)V

6. How many referenced functions are not defined? CP.1(4)
7. Now many data references are not used? CP.l(2)-
8. How many referenced data references are not defined? CP.l(6) c
9. Is the flow of processing and all decision points in that flow described? CP.l(51 Y q

10. How many proolem reports related to the requir ements have been recorded? C.1()

11. How many of those problem reports have been closed (resolved)? CP.l(7)

11z. PRECISION (RELIABILITY) I.
1. Has an error analysis been performed and budgeted to functions? AY.1(l) Y
2. Are there definitive statements of the accuracy requirements for inputs.

outputs, processing, and constants? AYl(2) n-
3. Are there definitive statments of the error tolerance of inout data? ET.Z(l)
4. Are there definitive statements o' the requirements for recovery from

comutational failures? ET.3(l) Y V

S. rs tOere a definitive statement of the requiremient for recovery from, hardware
faults? ET.4(l)

6. Is there a definitive statement of the requirements for recovery f~ro device-

errors? ET.S(l)

IsI thereRT a(INTIvsTan fterqurmnsfrueriptotu

1 ccss cntrols Cll deiiiesaemn fterqurmnsfrusrIptot

2. :s tneret a definitive statement of tie requirements for data Uase access

I controls? AC.l(2)
3. Is tuiere a definitive statennt of .."e resquirements 'or neinory 3ritectlcflI across tasks' AC.l(3)
L. :s there a definitive statement of t.'e recuireme.nts 'or recordin; and

recorting access to system? AAMMlIS. Is there a definitive statement of the reouirements f'or immediate v 2
i ndication of access violation? .A.1(Z)

A- 2

•-S-

. . .

METRIC WORKSHEET 1 SYSTEM DATE _______"

REQUIR 4ENTS ANALYSIS/SYSTEM4 LEVEL , NE: INSPECTOR:

IV. HUMAN INTERFACE (USABILITY)

1. Are all steps in the operation described (operations concept)? OP.l(1)

2. Are all error conditions to be reported to operator/user identified and

the responses described? OP.1(Z) -N

3. Is there a statement of the requirement for the capability to Interrupt

operation, obtain status, modify, and continue processing? OP,1(3)

4. Is there a definitive statement of requirements for optional input meda? NCM 116)

S. Is there a definitive statement of requirements for optional output media? Q N
cM.2(7)

6. Is there a definitive statement of requirements for selective output (N

control? 04.2(1)

V. PERFORIANCE (EFFICIENCY)

I. Have perfomance requirements (storage and run time) beer. identified for
the functions to be Performed? EE.1 Y

VI. SYSTEN INTERFACES (INTEROPERABILITY)

1. Is there a deflinitive statement of the requirements for co mnication with

Other systems? CC.1(l) 73N
2. Is there a definitive statement of the requirements for standard data

representations for communication with other systems? OC.l(1) Y

VII. INSPECTOR'S COMMENTS

Make any general or specific co nts that relate to the quality observed while

applying this checklist.

A-3

Pg. 1

METRIC WORKSHEET 2A SYSTEM DATE;

OESIGN/SYSTEM LEVEL NAME: INPECTOR:.

1. COMPLETENESS (CORRECTNESS, RELIABILITY)

1. Is there a matrix relating itemized requirements to modules which implement) I ,

those requireents? TR.l

Z. How many major functions (CPCIS) are identified? CP.1

3. How many functions identified are not defined? CP.1(2)

4. How many defined functions are not used? CP.1(3)

5. How many interfaces between functions are not defined? CP.1(6)

6 6. Number of total problem reports recorded? CP.1(7) 0

7. Number of those reports that have not been closed (resolved?) CP.1(7) -

Profile of problem reports: (number of following types) 8. Computational -"
9 Logic _ __

II. PRECISION (RELIABILITY) 10. Input/output
11. Data handling _____

* 1. Have math library routines to be used been fT 12. OS/System Suopor.

checked for sufficiency with regards to
Y A 1 outne/Routine

r requirements? AY.1(3) I Interface _ _

ccurcy5. Routine/System
2. Is concurrent processing centrally 16. Interfe

c reYl16. Tape Processing" ontrolled? ET.I(1) 17. User itrface
3. How many error conditions are reported 18. dat base i nterface

by the system? ET.I(2) J 19. user requested I
changes

4. How many of those errors are automatically F 20. Preset data I

21. Global variahlefixed or bypassed and processing continues?~ET 1 (2) d . efinition

5. How many, require operator ntierventntintevent~. 6 i 22. Recurrent errors _____6. Are provisions for recovery om hardware 23. ocumentaton

faults provided? ET.4(2) I 24. Requirement

7. Are provisions for recovery from device compliance

e 25. Operatorerors providled? ET.SAM 6 Qe n
126. Questions

.27. araware
III STRUCTURE (RELIABILITY, MAINTAINABILITY,7ESABILITY.

PORTABILITY, REUSABILITY, INTEROPERABILITY)

1. Is a hierarchy of system. identifying all modules in the system provided? V

Z. Number of Modules SI.1(2) MO.2(1) S!.1(I) /_

3. Are there any duplicate functions? SI.1(2)

4. Based on hierarchy or a call/cailed matrix, mow nany modules are cal"ea ty
more than one other module? GE.1 MO.2(1)

5. Are the constants used in the system defined once? GE.2(5) "LLi .L i

A-4

Pg. 2

;.IETRIC iGjA4SiiE-T 2A SYSTEM OATE;______

OESIGN/SYSTEM LEVEL~NAME INSPECTOR :

IV. OPTIMIZATION (EFFICIENCY)

1. Are storage requirements allocated to design? SE.l(I) / J N

2. Are virtual storage facilities used? SE.1(2) 1 N 1
3. Is dynamic memory management used? SE.1(5) N

4. Is a performance optimizing compiler used? EE.2(2) Y
S. Is global data defined once? CS.Z(3) N
6. Have 0ata Base or files been organized for efficient processing? EE.3(5) YO L N

7. Is data packing used? EE.2(5) Y (
8. Number of overlays EE.2(4)

9. Overlay efficiency - memory allocation EE.2(8)

10. max overlay size

11. min overlay size

V. SECURITY (INTEGRITY)

1. Are user Input/Output access controls provided? AC.I(1) nY N

2. Are Oata Base access controls provided? AC.l(2) /f) ,
3. Is memory protection across tasks provided? AC.1(3) N
4. Are there provisions for recording and reporting errors? AC.2(1,2) 4 ""

VT. SYSTEM INTERFACES (INTEROPERA8ILITY)

1. How many other systems will this system interface with? CC.1(1)

2. Have protoc 1 standards been established? CC.I(2) N S
3. Are they being complied with? CC.1(2) :

4. Number of modules used for input and output to other systems? CC.1(3,4)
5. Has a standard data representation been established or translation

standards between representations been established? OC.l(1) Y N

6. Are they being complied with? OC.1(2) N

7. Number of modules used to perform translations? OC.l(3)

VII. HUMAN INTERFACE (USABILITY)

I. Are all steps in operation described including alternative flows? OP.1(1) Y ,

2. Number of operator actions? OP.1(4) : t2 N-

A-5

-

METRIC WORKSHEET ?-A SYSTEMq DATE:

10OESIGN/SYSTEM LEVEL[NAME: INSPECTOR

VII. HUMAN INTERFACE (USABILITY)(Continued) ,2

3. Estimated or Actual time to perform? 0P.1(4)

4. Budgeted time for complete Job? OP.I(4)
5. Are job set up and tear down procedures described? OP.1(5) Y N -.

6. Is a hard copy of operator interactions to be maintained? OP.1(6) Y N

7. Number of operator messages and responses? OP.lf 2)
8. Number of different formats? OP.l(2) i
9. Are all error conditions and responses appropriately described? OP.l(2) Y N

10. Does the capability exist for the operato- to interrupt, obtain status, im

save, modify, and continue processing? OP.1(3) Y N

11. Are lesson plans/training materials for operators, end users, and

maintainers provided? TN.1(1) Y N
12. Are realistic, simulated exercises provided? TN.l(2) Y N

13. Are help and diagnostic information available? TN.1(3) Y N "

14. Number of input formats C.1(2)

15. Number of input values 0.1(1) I
16. Number of default values 04.1(1)

17. Number of self-identifying input values C?.1(3)
18. Can input be verified by user prior to execution? 04.1(4) y N i

19. Is input terminated by explicitly defined by logical end of input? C,.1(5 y .

20. Can input be specified from different media? C,.l(6) Y ,4
21. Are there selective output controls? CM.2(l) Y N

22. Do outputs have unique descript4ve user oriented labels? CM.2(5) Y N

2 23. Do outputs have user oriented units? 0.2(3) V N

24. Number of output formats? CM.2(4)

25. Are logical groups of output separated for user emamination? 04.2(5) Y N I
26. Are relationships between error messages and outputs unambiguous? 04.2(6 Y ,4
27. Are there provisions for directing output to different media? 0.2(7) f N

VIII. TESTING (TESTABILITY) APPLY TO TEST PLAN, PROCEDURES, RESULTS 7 P

1. Number of paths? IN.l(1) 4. Number of input parameters to

2. Number of paths to be ::st ?.(1 be tested? IN.1(2)

3. Number of input parametersNS. quter of interfaces? 1N.)

A-6

'* " l l l lil l~ il ... ' 1. .

7 AD-Ri2 i 368 AUTOMATION OF UALITY ME
ASUREME &T(U)

GE R L E T TC

CO VUNNYVALE CALIF J A MCCALL ET AL. SEP 82
U U ISS RRDC-TR-82-247 F30662-79-C-0267

UNCLSSIFIED F/G 9/2 N

mhh hhhimhhhhhhhhhhhhE
EhhhhhhhhhhhhI
mhhhhhhhhhhhhIl

0mhhhhhhhhhhhhI

*..

____ ma L32 *J2

I Igo

mI1.25 11.4 16

MICROCOPY RESCLuTION TEST CHART
g$&TICUAL mief h.or ST*AAMO -'190) A

.,L , - i * ,
:

. . . . , . , , , . . ,. , . ; - - -.- - - ~ ° . - * - , . -

Pg. 4

METRC AdRxSNL-T 2A SYSTEM DATE:
DESIGN/SYSTEI 4 LSEI. NME; _________INSPECTOR;

VJIII. TESTING (TESTA8ZLIrY) -APPLY TO TEST PLAN, PROCEDURES, RESULTS (CONTINUED) 7
6. Number of interfaces to be tested? IN.2(1) 9. Number of modules? IN.3(1)

7. Number of itemized performance requitr'? 10. Number of modules to be

8. Number of performance requirements to be exercised? I.3(1)
tested? 1N.2(2) 11. Artest inpus and oututs

Provided in summnary rmr1, YN711 retstip.san utt

rX OATA aASE

1. Nmber of unique data item in data base Sr.1(6)

2. Number of preset data itms SI.1(6)
3. Number of major segments (files) in data base SI.1(7)

;(INSPECTOR' S COMMENTS

Make any general or specific coments about the quality observed 'hile applying this

checklist.

A--7

YETC WORKSHEET.Z. SYSTE NAME: ... TE; _ _ _

3ESTGN/MOOULE LEVEL MODULE NAME: INSPECTOR:

-Z. COMPLETENESS (CORRECTNESS, RELIABILITY)

i. Can you clearly distinguish inputs, outputs, and the function being performed? CP.1(1) t

Z . How many data references are not defined, computed, or obtained from an external
source? CP.1(Z)

* 3. Are all conditions and processing defined for each decision point? CP.l(5)

4,. How many problem reports have been recorded for this module? CP.l(7)

- Profile of Problem Reports: Computational

S4. Number of problem reports still outstanding CP.(7 (j. Logic

"4 IT. PRECISION (RELIMILITY) . Input/Output

1. When an error condition is detected, is it N System/OS Support
" ~passed to calling module? ET.1C3) • .

Z. Have numerical techniques being used in algori-
thin been analyzed with regards to accuracy d_ . Configuration
requirements? AY.l(4) ,Y V Routine/Routine Inter-

face
3. Are values of inputs range tested? ET.2(2) Y N II. Routine/System Inter-~face
- Are conflicting requests and illegal combina- yf ce

tions identified and checked? ET.Z(3) I apPcs
,3. User Interface

5. Is there a check to see if all necessary data Y ,
is available before processing begins? ET.2(5) B n

15.User Requested Changes
5. Is all input checked, reporting all errors, 16 Preset Data

before processing begins? ET.Z(4)
vpr Global Variable Defi-

7. Are loop and multiple transfer index parameters Y nition
range tested before use? ET.3(2) Reurrent Errrs

11. Oocumentation
8. Are subscripts range tested before use? E.3(3) 20,Requirement Compliance

g. Are outputs checked for reasonableness before
processing continues? ET.3(4) Y2.Operator _

27 Questions

K:: 23. Hardware

IrI. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY)

i. How many Decision Points are there? 3. How many conditional branches are S
S1.3 there? SI.3

. 2. How many subdecislon Points are 4. How many unconditional branc.hes
t there? SI.3 a re there? S1.3

A-8

METRIC WORKSIIEST 2B8 SYSTE14 NAME:
OESIGH4/MODULE LEVEL MODULE NME: ."Pg. 2

_ .. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY) (CONTINUED)

!. ts the module dependent on the 7. Are any limitations of the Proces-
source of the input or the sing performed by the module
destination of the output? SI.l(A) i identified? EX.Z(l)6. Is the module dpendent on know,- 8. Numer of enrncsito M1U11
ledge of prior processing? SI.(3) ~ 9. Number of exits from modulIi(;) III

" IV. REFERENCES (MAINTAINABILITY, FLEXIBILITY, TESTABILITY, PORTABILTY, REUSABILITY,
INTEROPERAB LITY)

library routines, utilities or other other modules? MO.2(7)

1.Nae frfrne osystem 8. Istroavisoagdsaed withtesS.11system provided facilities $.1(1) 9. Does the module mix input, out-

Z. Number of input/output actions put and processing functions in
MI.I(2) same module? GE.Z(l) :

3. Numer of calling sequence parerters / .ione nnMO.2(3) 10. Number of machifne-dependent j

4. Hiow many calling sequence parameters functions performed? GE.2(2)
are control variables MO.2(3)

11. Is processing data volume limited. ..S. Is input passed as calling sequence E23

parameters MO.Z(4) y N 12. Is processing data value 1ulm ? .GE.Z) 2 t I
6. Is output passed back to calling 13. Is a common, standard subset of n I

module? MO.2(5) programning language to be used? Y
SS~l2

7. Is control returned to calling N ' J 14. Is the programming language
mdule rO.2(6) NI available in other machines?module _ _____ MI.I(1)"

V. EXPANOABILITY (FLEXIBILITY) "

1. Is logical processing independent of storage specification? EX.l(')

Z. Are accuracy, convergence, or timing attributes parametric? E.
3. Is module table driven? EX.2(2) &Y"
VT. OPTIMIZATION (EFFICIENCY)

1. Are specific performance requirements Cstorage and rv 4%mvw) allocated to thiS
module? EE.-

A- 9

.ETRIC WORKSHEET"2 SYSTEM NAME:

ESrGN/MOOULE LEVEL MODULE NAME: . Pg. 3

OPTIMIZATION (EFFICIENCY) (CONTINUED)

. hich category does processing fall in: EE.Z -.

Real -tim

:,ga.l O@I On-line

Time-constrained 1
'r Non-time critica.1

3. Are non-loop dependent functions kept out of loops? EE.2(l)

4. Is bit/byte packing/unpacking performed in loops? EE.Z(5) v U

. Is data indexed or reference efficiently? EE.3(5) Rd
It1. FUNCTIONAL CATEGORIZATION

Categorize function performed by this module according to following: C'rcl o W SW

CONTROL - an executive module whose prime-function is to invoke other modules.

; i INPUT/OUTPUT - a module whose prime function is to communicate data betwee""
the computer and the user.

[PRE/POSTPROCESSOR - a module whose prime function is to prepare data for or
after the invocation of a computation or data management
module.

ALGORITHM - a module whose prime function is computation.

I: DATA MANAGEMENT - a moJtAle whose prim function is to control the flow of
data within the computer.

SYSTEM a module whose function is the scheduling of system resources for
other modules.

VrIi. COnSiSTENCY

1. Does the design representation comply with established standards CS.l(1) -

Z. Do input/output references comply with established standards CS.1(3) Y

* Do calling sequences comply with established standards CS.I(2) Y

4. Is error handling done according to established standards CS.I(4)

i. Are variable named accordina to established standards CS.2(2)

A-10

!ETRIIC WaRKSHE~r ZB I SYSTEM NAME: I
2E11/OOULE LEVEL MODULE NAME: Pg4

EX. INSPECTOR'S CQI4EiTS

M ake any specific or general comments about. the quality observed while applying this
checklist?

A-111

[7 - -

I W

SOURCE. CODE/MOOULE LEVEL MODULE NAME: INSPE: tA,(;A

I. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY)

Number of lines of code MO.2(2) 11. Number of sub-decision points
SI.3

Z. Number of lines excluding comments 1Z. Number of conditional branches 3
SI.4(2) (computed go to) SI.4.(8)

3. Number of machine level language 13. Number of unconditional branches
statements SO.3(1) (GOTO, ESCAPE) SI.4(9)

4. Number of declarative statements 14. Number of loops (WHILE, 00)
SI.4 SI.4(3)

S. Number of data manipulation state- 15. Number of loops with jumos out of
mants SI.4 loop SI.4(3)

6. Number of statement labels ST 4(6) / 16. Number of loop indicies that are ,
(Do not count format statements modified SI.4(4)

7. Number of entrances into module / 17. Number of constructs that perform
S1.l(5) module modification (SWITCH,

S. Number of exits from-module ALTER) SI.4(S)
SI.(S) 18. Number of negative or complicated

9. Maximum nesting level SI,4(7) compound boolean expressions

0. Number of decision points 19. Is a structured 1an.uage 2 Y

(IF, WHILE, REPEAT, DO, CASE) SI.3 20. rs flow top to bottom (are there
any backward branching GOTOs)SI.4 (l

11. CONCISENESS (MAINTAINABILITY) - SEE SUPPLEMENT

Number of operators CO.1 1 j3. Number of Operands CO.T

Z. Number of unique operators CO.1 4. Number of unique operands CO.1

rIi. SELF-OESCRIPTIVENESS (MAINTAINABILITY, FLEXIBILITY, TESTABILITY, PORTABILITY, REUSABILI7

1. Number of lines of comments SO.1 7. Are. non-standard HOL statements
commented? S0.2(5)I-t

2. Number of non-blank lines of comments u4ILJ.

SO.1
3. Are there prologue comments provided 8. How many declared variables are

containing information about the not described by comments?
function, author, version number, SO.Z(6)
date, inputs, outputs, assumptions N
and limitations? S2.(') 9. Are variable names (rmnemonics)

4. Is there a comment which indicates descriptive of the physical or
what itemized requirement is functional property they
satisfied by this module? s y N 10. represent? SO.3(Z)

1 0. Oo the comments do more than
5. How many decision points and trans- repeat the operation? SO.2(7)

fers of control are not commented?
SD.2(3)

ii. Is the code logically blocked and
6. Is all machine language code-com- indented? SO.3(3)

mented? S.2(4)

12. Number of lines with more than

1 statew-t, SO.3(4)

A-12

4MTRC WORKSHIET SYSTEM NAM4E:

b 9, 2

OURCE COOE/MODULE LEVEL MODULE NAME: AMfAJ7 Pg. 2

IV. INPUT/OUTPUT (RELIABILITY, FLEXIBILITY, PORTABILITY)

r. Number of input statements MI.l(2) 4. Are inputs range-tested (for
inputs via calling sequences,

Numer of output statements MI.I() global data, and input
statements) ET.2(2)

3. Is amount of input that can be S. Are possible conflicts or Illegal
handled parametric? GE.2(3) combinations in inputs checked?

Y I/N) ET.2(3) Y t

6. Is there a check to determine if
all data is available prior to
processing? ET.2(5)

.1. REFERENCES (RELIABILITY, MAINTAINABILITY. TESTABILITY. FLEXIBILITY. PORTABILITY, REUSABILI.

1. Number of calls to other modules - . Hpae.2(1) 6. How many parameters passed to or p '
MO.2)from other modules ae not defined

Z. Number of references to system fn the modules are n
library routines, utilities, or in this module? MO.2(3)
other system provided functionsoh m vts 7. Is input data passed as parameter?

5. 1 (1)]
3. Number of calling sequence parameters / MO.2(4)

MO.2(3)
4. How many elements in catIfng s op d

sequences are not parameters? ca I 8. Is output data passed back to
M.2(3). ca ng module? P0,2(5)

z. How many of the calling parameters(input) are control variables? PICTMn.2(3) a o v b9. Is control returned to calling Y
module? MO.2(6)

VI. DATA (CORRECT'NESS, RELIABILITY, MAINTAINABILITY, TESTABILITY)

1. Number of locil variables SI.4(10) / 4. How many global variables are not Ap"
used consistently with respect to

2. Number of global variables SI.4(lO) Q units or type? CS.2(4)

3. Number of global variables renamed 5. How many variables are used for
c.s) SE.1(3) more than one purpose? CS.Z(3)

VII. ERROR HANDLING - (RELIABILITY) VIII. (EFFICIENCY)

1. How many loop and multiple transfer 1. Number of mix mode expressions?-
index parameters are not range EE.3(3) TdO
tested before use? ET.3(2) 2. How many variables are initialized - -

when declared? EE.3(2)
Z. Are subscript values range tested 3. How many loops have non-loop

before use? ET.3(3) dependent statements in them?EE.4I
4. How many loops have bit/byte

When an error condition occurs, is it packing/unpacking? EE.2(5)
passed to the calling module? ET.1(3) Y N SE.l(6) w

4. Are the results of a computation S. How many comoound expressions
checked tefore out;utting or before defined more than once? EE.2(3)

A-13
SI

Pg. -3

ouRcE COED/MODULE LEVEL MOULE NAME: FLEXIBLITY Pg. '

X. PORTABILITY X. FLEXIBILITY

*Is code independent of word and 1. Is
character size? MIN1(3)Z. rmu".d-n

2Z. Are there any limits to data
values that can be processed? a.-

Number of lines of machine language GE.Z(4)
statements. MI.I
Is data representation machine 3. Are there any limits to amounts
independent? MI.1(4) N of data that can be processed?

GE.Z(3)

. .Is data access/storage system soft- 4. Are accuracy, convergence and
ware independent? SS.1 timing attributes parametric?

- EX.2(l)

:1. DYNAMIC MEASUREMENTS (EFFICIENCY, RELIABILITY)

During execution are outputs within accuracy tolerances? AY.l(S) Y

urg Orn module/development testing, hat wae run time? EX.Z(3)

Complete memory map for execution of this module SE..(4)
Size (words of memory)

APPLICATION

SYSTEM

(&.* DATA

OTHER

. During execution how many data items were referenced but not modified EE.3(6)

D. uring execution how many data items were modified EE.3(7)

XII. INSPECTORS COMMENTS

Make any general or specific comments that relate to the quality observed by you while
applying this checklist:

A-14

WORKSHEET REPORT

The worksheet report displays the raw data entered in each worksheet. It

represents the current values in the data base. It is used to verify and

track data entry.

AUTOMATED MEASUREMENT TOOL AV

WORKSHEET REPORT

WORKSHEET 3

DATA Base Amtexs
MODULE: EXSGET DATE: 12/23/81

I. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY)
1. NUMBER OF LINES OF CODE 95.
2. NUMBER OF LINES EXCLUDING COMMENTS 47.
3. NUMBER OF MACHINE LEVEL LANGUAGE STATEMENTS 0.
4. NUMBER OF DECLARATIVE STATEMENTS 4.
5. NUMBER OF DATA MANIPULATION STATEMENTS 5.
6. NUMBER OF STATEMENT LABELS (EXCLUDING FORMAT STATEMENTS 0.
7. NUMBER OF ENTRANCES INTO MODULE 1.

ENTER [CR] TO CONTINUE 'E' TO EXIT:

8. NUMBER OF EXISTS FROM MODULE 2.
9. MAXIMUM NESTING LEVEL 3.
10. NUMBER OF DECISION POINTS (IF, WHILE, REPEAT, DO, CASE) 10.
11. NUMBER OF SUB-DECISION POINTS 0.
12. NUMBER OF CONDITIONAL BRANCHES (COMPUTED TO GO 6.
13. NUMBER OF UNCONDITIONAL BRANCHES (GOTO, ESCAPE) 0.
14. NUMBER OF LOOPS (WHILE, DO) 4.
15. NUMBER OF LOOPS WITH JUMPS OUT OF LOOPS 0.
16. NUMBER OF LOOPS INDICIES THAT ARE MODIFIED 0.
17. NUMBER OF MODULE MODIFICATIONS (SWITH, ALTER) 0.
18. NUMBER OF NEGATIVE OR COMPLICATED COMPOUND BOOLEAN EXPRESSIONS 0.
19. IS A STRUCTURED LANGUAGE USED? YES
20. IS FLOW TOP TO BOTTOM (ABSENSE OF BACKWARD BRANCHING GOTO's)? YES

II. CONCISENESS (MAINTAINABILITY)
1. NUMBER OF OPERATORS 4.
2. NUMBER OF UNIQUE OPERATORS 1.
3. NUMBER OF OPERANDS 8.
4. NUMBER OF UNIQUE OPERANDS 3.

ENTER (CR) TO CONTINUE, 'E' TO EXIT:

A-15

* -.--

EXCEPTION REPORT

" The exception report delivers the relationship of each module to a given
threshold value of a particular metric. The relationship (less than, equal

, to, or greater then) and the threshold value is input from the user. This
"' report can be used to identify modules whose scores do not meet a certain

threshold, identifying them as potential problems.

AUTOMATED MEASUREMENT TOOL

EXCEPTIONS REPORT

DATABASE: AMTEXS DATE: 12/23/81

METRIC: ET. 2

PHASE: MODULE IMPLEMENTATION

,. THRESHOLD VALUE: 0.65

RELATION: LESS THAN

THE FOLLOWING MODULES ARE WITHIN RANGE REQUESTED 1

MODULE NAME VALUE

EXSCEX 0. W

EXCDLP 0.500

EXSDBG 0.333

EXSHLP 0.

EXSPGR 0. "

EXSUPK 0.

A-16

NORMALIZATION REPORT

The Normalization Report provides the user with the overall rating of a

selected quality factor. A series of regression equations are displayed whic

have been empirically derived from research. The current metric values are

substituted in the equations and a rating for the selected quality factor is

calculated. Regression, equations exist for the quality factors reliability,

maintainability, portability, and flexibility only:

AUTOMATED MEASUREMENT TOOL

NORMALIZATION FUNCTION REPORT

DATABASE: AMTEXS

MODULE: EXSGET DATE: 12/23/81

DESIGN NORMALIZATION FUNCTION IMPLEMENTATION NORMALIZATION FUNCTION

FACTOR: PORTABILITY

NO DESIGN NORMALIZATION FUNCTION PORTABILITY = -. 7 + .19 (SD.l) +

FOR PORTABILITY FACTOR .76(SD.2) + 2.5(SD.3) + .64(MI.l)

SD.l = 0.426

SD.2 = 0.857

SD.3 = 1.000

MI.l = 0.972

PORTABILITY = 2.154

-

A-17

METRIC REPORT

This report calculates the value of each metric catagorized by factor and by

development phase. This report is used to determine a total picture of the

*project as measurements are taken.

AUTOMATED MEASUREMENT TOOL

METRIC REPORT/MODULE IMPLEMENTATION PHASE

DATABASE: AMTEXS

MODULE: EXSGET DATE: 12/23/81
"S

FACTOR CRITERIA METRIC VALUE

CORRECTNESS Traceability TR.I 1.000
Completeness CP.l 0.667
Consistency/Procedure CS.l 1.000
Consistency/Data CS.2 0.500

RELIABILITY Consistency/Procedure CS.l 1.000
Consistency/Data CS.2 0.500
Accuracy AY.l 1.000
Error Tolerance/Control ET.I 1.000
Error Tolerance/Input Data ET.2 1.000
Error Tol./Computational Fail. ET.3 0.
Design Structure SI.l 0.625
Complexity SI.3 0.100
Code Simplicity SI.4 0.722

MAINTAINABILITY Consistency/procedure CS.l 1.000
Consistency/Data CS.2 0.500
Design Structure SI.l 0.625
Complexity SI.3 0.100
Code Simplicity SI.4 0.722

4 Modular Implementation MO.2 0.750
Quantity of Comments SD.l 0.426
Effectiveness of Comments SD.2 0.857
Conciseness CO.l 1.000

TESTABILITY Design Structure SI.l 0.625
Complexity SI.3 0.100 p
Code Simplicity SI.4 0.722
Modular Implementation MO.2 0.750
Quantity of Comments SD.1 0.426
Effectiveness of Comments SD.2 0.857
Descriptiveness of Impl. Lang. SD.3 1.000

PORTABILITY Modular Implementation MO.2 0.750
Quantity of Comments SD.l 0.426

A-18

FACTOR CRITERIA METRIC VALUE

Effectiveness of Comments SD.2 0.857
Descriptiveness of Impl. Lang. SD.3 1.000

System Software/Independence SS.1 0.500
Machine Independence MI.A 0.972

REUSABILITY Modular Implementation MO.2 0.750
Generality/Implermentation GE.2 0.750

Quantity of Comments SD.l 0.426
Effectiveness of Comments SD.2 0.857

Descriptiveness of Impl. Lang. SD.3 1.000

System Software/Independence SS.1 0.500

Machine Independence MI.1 0.972

FLEXIBILITY Modular Implementation MO.2 0.750

Generality/Implementation GE.2 0.750
Data Storage Expansion EX.l 0.

Computational Extensibility EX.2 0.500

Quantity of Comments SO.1 0.426
Effectiveness of Comments SD.2 0.857

Descriptiveness of Impl Lang. S0.3 1.000

INTEROPERABILITY Modular Implementation MO.2 0.750

EFFICIENCY Iterative Processing EE.2 1.000
Data Usage EE.3 0.668

A-19

STATISTICS REPORT

The Statistics Report provides a profile of COBOL constructs for each module.

AUTOMATED MEASUREMENT TOOL

STATISTICS REPORT

DATABASE: AMTEXS -'

MODULE: EXSGET DATE: 12/23/81

NUMBER OF LINES OF CODE 95.

NUMBER OF PERFORM STATEMENTS 4.

NUMBER OF EXTERNAL CALLS 0.

NUMBER OF EXECUTABLE STATEMENTS (PROCECURE DIVISION) 43.

NUMBER OF COMMENTS 48.

NUMBER OF DECLARATIONS (DATA DIVISION) 4. U
NUMBER OF LABELS 0.

NUMBER OF I/O REFERENCES 6.

NUMBER OF REDEFINES (EQUIVALENTS) 0.

NUMBER OF LEVEL 88 DATA ITEMS (LOCAL VARIABLES) 1.

A- 20

-- 4

SUMMARY REPORT

The sunmmary report provides a summary of the metric scores for all of the

modules in the system.

AUTOMATED MEASUREMENT TOOL

METRIC SUMMARY REPORT

DATABASE: AMTEXS DATE: 12/23/81

MODULE: EXSGET

AY.l = 1.000 CO.l = 1.000 CP.l = 0.667 CS.l = 1.000

* CS.2 = 0.500 EE.2 = 1.000 EE.3 = 0.668 ET.1 = 1.000

* ET.2 = 1.000 ET.3 = 0. EX.l = 0. EX.2 = 0.500

GE.2 = 0.750 MI.1 = 0.972 MO.2 = 0.750 SD.1 = 0.426

SD.2 = 0.857 SD.3 = 1.000 S1.1 = 0.625 SI.3 = 0.100

S1.4 =0.722 SS.1 =0.500 TR.1 1.000

A-21

i.0

QUALITY GROWTH REPORT

When the user wishes to track the value of a particular metric over time, the

Quality Growth Report will furnish a tabular display of the scores of a

selected metric over the plhases of the project. This report is used to track

a particular metric through a project to see how its value changes.

AUTOMATED MEASUREMENT TOOL •

QUALITY GROWTH REPORT

DATABASE: ANTEXS

MODULE: EXSGET DATE: 12/23/81

METRIC DETAILED MODULE

DESIGN IMPLEMENTATION

ET.2 0.750 1.000

'O2

S

A-2 2

*4 -.

MATRIX REPORT

This report displays the average and standard deviations for all metric values -48

modules. This report displays all of this information in a matrix form

allowing the user to easily identify modules with metric scores that vary from

the system average.

AUTOMATED MEASUREMENT TOOL
MATRIX REPORT

DATABASE: AMTEXS

PAGE = I DATE: 12/23/81

MODULE NAME AY. CO.1 CP.l CS.l CS.2 EE.2

EXSCEX 0. 1.000 0. 0. 0. 1.000

EXSCHK 1.000 1.000 0.667 1.000 0.500 1.000

EXSCLP 1.000 1.000 0.667 1.000 0.500 1.000

EXSDBG 0. 1.000 0. 0. 0. 0.

EXSGET 1.000 1.000 0.667 1.000 0.500 1 000 t

EXSHLP 0. 1.000 0.833 1.000 0.500 0.

EXSPGR 0. 1.000 1.000 1.000 0.500 1.000

EXSQRY 0. 1.000 0.667 1.000 0.500 0.

EXSSSM 0. 1.000 1.000 1.000 0.500 0.

EXSUPK 0. 1.000 0.625 1.000 0.500 1.000

AVERAGE = 0.300 0.900 0.550 0.700 0.350 0.500

STANDARD DEVIATION = 0.438 0.316 0.401 0.483 0.242 0.527 --

A
S

A-23

' . . .

MODULE REPORT

This report displays the catalog of modules that have been entered into the

database. It providss a status report on the database.

AUTOMATED MEASUREMENT TOOL

MODULES REPORT

DATABASE: AMTEXS DATE: 12/23/81

WSl C*4TAINS SOME NIL VALUES

WS2A CONTAINS SOME NIL VALUES

THE FOLLOWING MODULES ARE PRESENTLY IN THE CURRENT DATABASE:

1. EXSCEX ** 2. EXSCHK *

3. EXSCLP * 4. EXSDBG **

5. EXSGET * 6. EXSHLP *

7. EXSPGR * 8. EXSQRY *

9. EXSSSM * 10. EXSUPK *

TOTAL NUMBER OF MODULES IN DATABASE IS 10.

NOTE: * INDICATES BOTH WS2B AND WS3 CONTAIN SOME NIL VALUES. S

NOTE: ** INDICATES WS28 CONTAINS SOME NIL VALUES.

A2

i! A-24

APPENDIX B

CONVERSION OF AMT

FROM VAX 11/780 TO

HONEYWELL 6000

7.1

I -.

SECTION B-1

INTRODUCTION

When designing the AMT (Automated Measurement Tool), the portability of the -
-

IFTRAN source code was a major consideration. The AMT contract stipulated

that a fully running version of the AMT be delivered on the Honeywell 6000

series computer (GCOS operating system) located at RADC (the Rome Air

Development Center, Griffiss Air Force Base, New York). In order to provide

us with more efficient computer access, it was decided to develop the software

on a VAX 11/780 computer, at our eneral Electric Facility in Sunnyvale,

California and then ship a tape containing the source code to RADC, Therefore,

the VAX version had to be implemented in very standard code using system I

dependent functions only when absolutely necessary. Whichever system

dependent functions were used would be modified after the code had been moved

to the Honeywell. This appendix describes the coding techniques used to

assure the AMT code was kept as system independent as possible and the V :

differences between the VAX and Honeywell system dependent functions.

I B

aw

I -

B-2

4 _ __

SECTION 8-2

CODING STANDARDS

Table 82-1 describes the standards established. Table B2-2 identifies the -.

differences in the system dependent functions between the two computer

environments.

[i -S

Table B2-1 Code Standardization

1.- Only INTEGER and REAL data types used.

2. No INTEGER*n data types used.

3. No LOGICAL data types used.

4. No CHARACTER or CHARACTER*n iata types used.

5. Character strings are stored in integer arrays, one character per

array element. Unused array elements are filled with blanks.

6. Input/Output of "character" arrays is performed with the implied DO in

combination with the alphanumeric (A) field Format descriptor..

Example: WRITE(CRT,100)(DBNAME(I), 1=1, 15)

100 FORMAT 'DATABASE NAME' , 15AI)

S"
7. System dependent functions (mainly file handling functions) are

isolated into subroutines. This way, modifications to those functions

need only be made in one place.

B

- *

B-3 *

Table B2-2 System Dependent Function Differences

1. Creating Files

VAX ".

OPEN (UNIT n, NAME = filename, TYPE = 'NEW')

VAX FORTRAN allows filename to be an integer array, which is the

way AMT stores character strings.

H6000

CALL CALLSS ("ACCESS CF, filename, size, type")

or
, -,

CALL CALLSS (string)

where string "ACCESS CF, filename, size, type"

Honeywell FORTRAN has no direct method for creating files. The CALLSS

routine allows any timeshare command to be given from an executing FORTRAN

program (the timeshare command being a character string enclosed in

quotes). In this case, the ACCESS subsystem is called to create a new 0

* file. Note that AMT stores filenames in integer arrays. Therefore, in

order to call CALLSS, each character stored in the filename integer array

must first be concatenated into the timeshare command character string.
Concatenation is performed by the Honeywell CONCAT routine. '

2. Opening Files

VA__X

OPEN (UNIT = n, NAME = filename)

B

~B-4
1!

• 9

Table B2-2 System Dependent Function Differences (Cont.)

H6000

CALL ATTACH (unit, "filename;", etc.)

Note that filename must be a character string. Each character

stored in an AMT filename integer array must first be

concatenated into the filename character string. Also note that

the filename character string must be terminated by a semicolon.

3. Closing Files

VAX

CLOSE (UNIT = n, DISPOSE = 'SAVE')

H6000

CALL DETACH (unit, etc.)

4. Determing if a File Currently Exists

VAX

CALL LOOK (unit, filename, blocks, return code)

After calling LOOK:

IF return code = 0, the file exists.

IF return code = 1, the file exists, but is currently open.

Any other return code, the file does not exist.

H6000

CALL ATTACH (unit, filename, status, etc.)

(See Opening Files)

After calling ATTACH: "-

If status z octal (4000 0000 0000) or
octal (4004 0000 0000)

the file exists.

IF status octal (4037 0000 0000)

B-5
V

,~ .-

Table B2-2 System Dependent Function Differences (Cont.)

the file exists, but is durrently open.

Any other status

the file does not exist.

5. Opening Random Access Files

VAX

OPEN normally W

H6000

Before accessing random files a call to RANSIZ must be made to

specify the record size of the file. The file is then opened

normally.

6. Suppressing Carriage Return and Line Feed

VAX U

End FORMAT statement with dollar signfield descriptor. The cursor

will remain positioned at its current location for the next write.

FORMAT (5X, 15AI, $)

H6000

Place an ampersand as the first print character in FORMAT statement.

The write will begin where the cursor was previously positioned.

FORMAT (&, F6.2) P

. 7. PROGRAM Statement

VAX
Allows the PROGRAM statement as the first line of a FORTRAN program.

H6000

Does not recognize the PROGRAM statement.

B-6

SECTION B-3

VAX TO H6000 TRANSFER TAPE

, Copying Files from the VAX to the Transfer Tape (see also Section B-4).

1. Create a file named TRANSFER.LST. Enter into TRANSFER.LST the name
of each file to be transferred (one filename per line).

2. $ ALLOCATE MTAn:

3. Physically mount tape on drive #n.

4. $ INITIALIZE/DENSITY=1600 MTAn: label

5. $ MOUNT/DENSITY=1600/FOREIGN/BLOCK=80 MTAn: label

6. $ RUN TAPE2

- When prompted for the output file name enter MTAn:

(where n = number of tape drive allocated)

- When prompted for the VAX file list enter TRANSFER.LST

- At the end of its execution TAPE2 will display the message ALL

FILES COPIED

7. $ DISMOUNT MTAn: .

8. Physically remove the tape.

S
9. $ DEALLOCATE MTAn:

The tape is now ready to be sent to RADC.

Reading the VAX Tape on RADC's H6000 (see also Section B-6)

1. Obtain the RADC tape number assigned to the transfer tape. A

2. Edit file /AMTS/TRANSLATE/TMP, substituting the new tape number in
the TAPE9 IN card.

B-7

3. Create a sequential file named /AMTS/VAXDATA of maximum size 1000.
The transfer tape will be written to this file.

4. *CARDIN~

5. *RUN /AMTS/TRANSLATE/TMP

6. When the job has finished running:
CONVERT /AMTS/VAXDATA =:TRAIL

7. *RESAVE /AMTS/VAXDATA

/AMTS/VAXDATA now contains the information that was stored on
the transfer tape.

B-8

SECTION B-4

VAX LISTINGS

1. Listing of VAX File TRANSFER.LST.

100 EXSCEX.IFT

200 EXSDBG.IFT

300 RGSCMM.IFT

400 UTLCRE.IFT

B-9

APPENDIX C

DBMS SURVEY

1

".'S

S

' 1

w..

SECTION C-i

PURPOSE

- One of the requirements of the contract was to attempt to utilize a DBMS in -

our system design. It was anticipated that the use of a DBMS would increase

the portability of the system as well as reduce the required effort to develop

the system. Because these assumptions did not hold true for MDQS, the DBMS on

the H60OO/GCOS target environment, a DBMS survey was conducted. -

Section 2 discusses the problems of using MDQS. It states why the initial

version of the AMT will have to be implemented with its own built-in data

management functions. 0

Section 3 examines the utility of using alternative DBMS's deemed most likely

to be available in target environments. These DBMS's were examined and

compared according to certain criteria. -w

0

,C .

C-2

I

SECTION C-2

THE PROBLEMS OF USING MDQS

The use of a DBMS was initially considered to be a good design choice.

Storage and retrieval of the metric data could be performed by the DBMS. It
, has turned out that the Honeywell provided DBMS, MDQS, is inappropriate for

the AMT application. Thus, while DBMS's in general could be considered for

other versions of AMT, the initial version on the RADC H6180/GCOS system will

* have to be implemented with its own built-in data management functions.

The two major reasons for not using MDQS are: (1) we would not be able to use

any of our existing software, and (2) the system would not be transportable.

MDQS is a completely self-contained DBMS. It was developed strictly for

business applications in which data is simply stored and retrieved with a
minor amount of manipulation. The manipulation is done by internal procedures

written using MDQS - provided constructs. Thus, all of AMT would have to be -'

implemented within the framework of MDQS. This is practically iripossible

considering the complexity of the parsing and measuring algorithms that are

part of AMT. In addition, none of the existing code that performs the parsing

function (approximately 2000 lines of code) could be used. S

More importantly, if the ANT was developed under the framework of MDQS it

would have to be totally converted. This conversion would be necessary either
for interfacing with another DBMS of for running on another system.

Constrainment of the portability of this prototype software development is

unacceptable. The trade-offs of using or not using MDQS are summarized below:

Using MDQS: Advantages S

o Query capability

o Data management routines provided

C

C-3

S

Disadvantages

e Resulting system not portable to 370 or 11/70

* No existing software could be used.

Because of the net unfavorability of using MDQS, our approach has been te
develop some very basic data management functions based on a data base

specifications. These data management function provide the core functions of

a DBMS. The system dependencies are isolated in a few of these routines.
They will have to be re-written when the system is transported to another

system. This is a significant improvement in the degree of portability of tht

system.

-g

I -,

I

4

C-4

SECTION C-3

ALTERNATIVE DBMS'S FOR CONSIDERATION IN FUTURE AMT VERSIONS

In order to examine the utility of alternative DBMS's, we did a survey. Table

C3-1 gives an overview of the DBMS's we considered which have the facilities

to run on the target environments hardware and operating systems. Tables C3-2

* through C3-7 include a detailed analysis of only those DBMS's thought likely

to best fit the target environments on overall criteria. MDQS is also
included. Of these latter DBMS's only the following are capable of being

called from FORTRAN:

e TOTAL

* IDMS

e MRDS

* MRI

Accordingly, selection from this subset of four DBMS's would contribute the

most portabiltiy to future ANT versions in the target environments, all other

things being equal.

C-5

Table C3-1

Data Base Management Systems

I. IBM 370/05

A. Self-Contained Systems "F

1. ARAP-Data Retrieval System
(IBM 370/115 and up, OS/VSl, OS/VS2. Interfaces with
OS Telecomm subroutines.)

2. Computer Corporation of America - Model 204
(IBM 370 under OS/MFT, OS/MVT).

3. Infodata Systems Inc. - INQUIRE
(IBM 370 interfaces with OS)

4. Mathematica Inc. - RAMIS
(IBM 370 under OS. Uses OS facilities for I/O, but
relies on no other system, Dependent utlities. Dependent
utilities, contains own sort logarithm. TP and Timesharing
interfaces are available).

5. Meade Technology Corp. - DATA/CENTRAL
(IBM 370, Model 40/135 up. Operates under all versions of
OS including virtual. Implementation on new machine re-
quires 12-18 months).

6. MRI Systems Corporation - SYSTEM 2000
(IBM 370 OS VM/CMS, OS/1100).

7. National CSS- NOMAD
(IBM 370 OS)

8. TRW OIM II
(IBM 370 OS/VS)

B. CODASYL - Type Systems

1. Cullinane Corporation - IDMS
(IBM 370, all operating systems)

2. International Data Base Systems - SEED
(Written in FORTRAN so it may be used on any machine
with a FORTRAN computer. CPU's include IBM 370).

C. HOL - Based Non - CODASYL SYSTEMS

4 1. Cincom Systems, Inc. - TOTAL
(IBM 370 OS)

C-6

2. IBM Corporations - IMS

(IBM/VS runs on System 370 models 138, 145, 148, 15511, 158,
16511, 168 and 3033, OS/VSl and OS/VS2).

3. Insyte Data Corp. - DATA COM/DB
(IBM 370, OS)

4. Software Ag - ADABAS
(IBM 370, OS MVT)

II. Honeywell 6180/GCOS

A. Self - Contained Systems

1. MDQS

B. CODASYL - TYPE Systems "-I

1. Honeywell information Systems IDS II
(Honeywell L6, L64, and 6000/L66 systems operating under GCOS
batch or communications environment).

C. HOL - Based NON - CODASYL Systems -.

1. Cincom Systems, Inc. TOTAL

(Honeywell Level 62 GCOS; Level 66/6000 GCOS)

III. Honeywell 6180/MULTICS

A. Self - Contained

1. Honeywell Multics Relational Data Store - MRDS
(HIS Series 60/Level 68 Hardware).

IV. PDP 11/70 UNIX

A. Self - Contained Systems

1. Bell LABS - INGRESS
(PDP 11/70; UNIX)

B. CODSDYL - TYPE Systems

1. Cullinane Corporation - IDMS -11 .

(similar to IDMS; see IDMS chart)

(PDP 11/70; IAS

C-7

1. -I-:

Table C3-2

MRI

FUNCTION P ROPERTY ARAI,-,RS

I ASelf-contained DL. Its defined in ters of inique
DEFINITION Description name and number. Names up to 250 cnaracters in leng:n.

Data Types: integer, decimal, cnaracter, text, data.money. Variable lengtn character and text fiels uc
to 250 characters long. Any number of user-soecified
indexed fields.

B. Logical Tree structure. Data Base Definition allows 32 levels
Structure of Scheme records containing schema items to model

entries of data records containing data items. Data
Bases may be linked using HOL interface to form logical
networks. 1

C. Physical
Structure Each data base is a stand-alone entity, comprised of

separate physical files for schema, data, structures,
and indexes. Data stored in user-aetermined fixed-
length blocks in physical hierarchies system does
own deblocking. File inversion on selected fields.

D. Access BOAM, BSAM, BPAM, (SAM.
Methods

E. Special Storage Alphanumeric fields are variable length within
Techniques fixed length logical record via separate ExtendedI Field Table. Hierarchical structure is used to

eliminate data redundancy. A variety of storage
techniques (ring, tree, dense list, etc.) are used S
to optimize specific DBMS processes.

1I. DATA BASE I Initial data load may be run as a one time, incre-
CREATION i mental or transaction processing procedure. This

AND loading can be accomplished with any combination
::z REV!SION 1 of Programing Language Extension, Self-Containe

* ILanguage and/or Self-Contained Utlity.

I Schema may be modified using self-contained
language. System automatically performs any internal
restructuring required.

:7. WA A. Selection Selection is at the Item level. Items -nay be
,MAIPULATION1 Level Identified by schema name or alias.

a. Operators, Variety of CML'S: PLEX, SCL, .W. Ccmprenensive
SComparators, selection capability in al CML's. Uses oolen,

Logical Threshold, indexed/non-indexed, text search and
Complexity ositionai tecnniques. LOcal and ;labal updates

i with dynamic reuse of deleted soace. "CL sjppcr-:s
virtual data items,

C-S

"-I - . . ;w.. .. ,; . .; - *.w

-7-

Table C3-2

MRI (cont.)

FUNCTION I ?ROPERT, PARA.IE tRS

, C. Reporting Self-Contained Languages suitable for heuristic

browsing, simple reoorting, ano complex, formal
report generation are available. Both user-
defined and formal default ootions are provided.
Report requests may be formulated dynamically or
executed from data base stored procedures. Sorts,
arithmetic expression processing, logic structures,
and system supplied function are also included.

V. USER A. Manipulation English-like. Self-contained Query/Update Ian-
INTERFACE Languages guage for single/multiple user interactive and

batch processing.

B. Mode of Interactive or batch. All Self-Contained and
Interaction HOL languages supported in both batch and interactive

modes. Interactive supoort via MRI's TP 2000,
CICS, INTERCOM4, TSO, and others.

C. Error English-like text messages provided for self- -.
Messages contained language user, and diagnostic return

codes and messages for host language programs.
Centralized Messages and Codes Manual. Microfiche
early warning for systems supoort personnel.

0. Documentation ,Modular documentation designed to satisfy the
needs of each type of user. Structured top-down
from concepts to language specifications to admin- S
istration and supoort. Strong reliance on examples
and usage guidelines.

'1-. APPLICATION1 A. HOL Interface Interface available for assemoly, COBOL, FORTRAN, I
PROGRAMHING i I and PL/l languages, HOL interface includes a

P precompiler which transforms English-like
commands embedded in the HOL code t3 DBMS call

i commands and the necessary parameter lists. The
interface allows run-time HOL interaction with uo
to sixteen open data bases at any point in time.

B. Subroutine Modular HOL programming is supported with DBMS
Capabilities processing available to main l!ne and subortina .

modules. SC. commands ("strings") May be store'
with the data base definition and executed by
entering the string name. Parameters may be passsec
at execution time. Strings may be called by other
strings and both retrievals and uodate may be
performed. External command files -nay be read.
Calculation definitions -ay be store- as vir:uai
Ite-s in the cata base. Calculation definitions
may be parametric.

C-9

Io" .

Table -C3-2
MRI (cont.) .*

FUNCTION I ROPR.T ,ARAMET.S

C. Special HOL support for dynamic subsets (LOCATE), network
Operators retrievals (L:NK), sorts (ORDER BY), and automatic

return code processing (FOR RC) are examples of spe- -.
cial operators.
Special operators in the SCL includes histograms
system functions (SUM, AVERAGE, STO DEVIAT-ON,
COUNT, MINIMUM, MAXIMUM), and user defined calcu-
lations using the () + - / symbols are examples.

D. I/O Outside Any format output file from HOL interface Program.
DMS Report files created by Self-Contained Language

and Report Writer. Unload to value string format
provides capability to move data-base across
hardware types.

E. Auxiliary Intermediate results may be stored and manioulated
Storage in the self-contained report writer. Work areas,

database table pages, sort and scratch files managea
by DBA tuneable Buffer Manager.

VII. DATA BASE A. Data Automatic checking on all fields oased on data type. -
SECURITY, Validation Further data checking may be performed by user HOL
INTEGRITY programs. Customized data validation via the user

AND exit facility of the Universal Software Interface.
ADMINIS-
TRATION 3. File Security via passwords at item level. Authorization

Protection for retrieval, update and/or qualification optional.
Security by data value at the hierarchical record
level. User exits available for custom security

checking.
C. Sur/eillance Two levels of logging (accounting and system usage)I _ _ _ _ _ provide data suitable for surveillance needs.

I0. Failure Multiple recovery techniques which allow the DBA to I
Protection trade logging overhead for recovery speed. Capa-

bilities range from automatic rollback to self-
contained dump/restore utilities. Recovery tch-
niques can be specified for each individual dat. base . "
and can be changed upon command.

c- .0

| -S

IBM 37/0S

IDMS: CODASYL-TYPE DATA BASE MANAGEMENT SYSTE'l

FUNCTION PROPERTY PRAMJ.E7ERS

I. DATA BASE A. Item User - assigned names, Formats are those of sup-
DEFINITION I Description porting host language.

B. Logical Network structure is through CODASYL'S set relaticr.-
Structure ships. Several types of relationship possible.Mem-

bership may be mandatory or optional, manual or
automatic. Linkage options allow one or bidirec-
tional pointer chains and member to owner pointers.

C. Physical
Structure User may specify storage area for occurrences of

record type. Other options: System handles all- •
ocation and optimization of peripheral storage.
DB administrators may assign DB portions to
physical areas.

E. Access Chained, direct, rando.ized, sequential, sec-
Methods ondary index.

F. Special Storage Space management paging technique.
Techniques S aa g i

IT DATA BASE Input via user application programs, or load
(CREATION utility.

AND
III REVISION Modification of total DB descriptions (schema)

can be handled either with a reload or restruc-
ture. Subschema can be modified at any time.

IV. DATA A. Selection At record level by record identifier or placement
MANIPULATION Level relative to other records, or secondary indexes.

B. Operators, Function of the host language and user programs.
Comparators,
Logical '
Comolexity

C. Reporting Reporting done through user program. OLQ
facility.

V. USER A. Manipulation COBOL, PLI, Assembler Maclu, CALL, FORTRAN
INTERFACE Language

B. Mode of CV option allows several DMS tasks to share same
Interaction copy of system in a multitask environment. CV

perfoms task monitoring and threading of DBMS
calls. System includes monitor interface and a
TP monitor. With monitor, each task can access
any DB areas available for the user's declared
usage mode. GCI ensures that more than one task '
does not update the same record c 'he same time. --

Multi-threading and multi-tasking -entral version.
Intergrated DB/DC functions.

C-ll

4P

71]

IBM 370/OS

_ _ _IDMS: CODASYL-TYPE DATA BAS (cont

FUNCTION :RCPERT' .AM ET7

C. Error Compilation errors listed with COBOL source
Messages statements. Error status is returned after DML

statement execution for all host languages.

0. Documentation Standard user documentation.

VI. APPLICATION A. Hol Through call statements.
PROGRAMMING i Interface I

B. Subroutine Function of user's application program.
1 Capabilities

C. Special Limited to those provided by host language.
* Operations

" D. I/O Done through user programs.
Outside DMS

E. Auxiliary To be provided by user on his program area.
Storage

VII DATA BASE A. Data Data item integrity is user's responsibility.
SECURITY, Validation Record placement is verified by program following
INTEGRITY user placement options. System provides data

& dictionary reports to DB administrator to docu-

ADMINIS- ment DB contents.
TRATION

B. File Access restrictibns via subschema. Normal,
Protection protected or exclusive retrieval or update can be

specified for each area. Record level lock for
concurrent update and deadlock protection.

C. Surveillance Security dump provides DB copy and statistics
I of DB contents. Any part of dump may be re-

loaded using the security restore utility.

D. Failure Restart/recovery utilities
Protection

I

C-12

"!

*11
-46V

HONEYWELL 616UiGCOS

TOTAL: HOL-BASED DATA BASE MANAGEMENT SYSTEM

FUNCTION PROPERTY PARAMETERS

I. DATA BASE A. Item User assigned names. Data formats are those of
DEFINITION Description supporting host language.

B. Logical Network multilist structure implemented via chains - _
Structure of bidirectional pointers linking variable entry

records on the basis of relationships specified by
user. DB elements include items, groups, records,
files. Multiple linkage paths may be extended over
several data bases. Each linkage path corresponds to
a single entry file which provides pointers to the

chains of the linkage path.

C. Physical Records are fixed length, although several record
Structure formats on any given file. Single-entry records are

accessed by a randomizing procedure using a key value.
Variable entry records are then accessed following

1 pointer chains. All data sets can also be accessed
serially.

0. Access Disk access is through BDAM and/or VSAI4. 11
Methods

E. Special Storage Multiple files can share an I/0 buffer as specified
Techniques by user, but single and variable entry data sets may

not share same I/O buffer. A linkage path may be
specified as "primary" to optimize physical placement
of records. TOTAL provides dynamic reallocation of
space and optimization of synonym chains as well as
user control parameters which optimize seek time.

11. DATA BASE Input via user application programs or optional
CREATION database administrator utilities.

Ill. DATA BASE New records can be added, deleted, or modified from S
REVISION i existing files. New data sets, linkage paths, record

elements and modification of storage areas require
DB egeneration, but not necessarily program or

D8 e modification.

IV. DATA A. Selection At field level based on field values. Items described
MANIPULATIONi Level by name or by position (in the case of records) along

with the linkage path.

B. Operations, Standard comparators. Complexity is function of
Comparators, user program.
Logical
Complexity

C. Reporting Reporting via user programs with optional on-line -
query and batch reporting system capability.
Output to all devices available to user programs.

-1

C-13

. - --- N- -.

LiONE WEL L2'C

TOTAL: HOL-BASED DATA BASE MANAGEMENT SYSTEM (cont.'

FUNCTION ?ROPERTY PARAMETE RS

V. USER A. Manipulation Any language supporting subroutine calls.
INTERFACE Language

B. Mode of TOTAL: Batch or on-line full multi-task, multi- -

Interaction thread system. Transaction logging (before and after
images). Records locked (one per file per task) when
task is updating. If locked record is requested by
other tasks (as monitored by the system) it is released
on a "time/request" algorithm to other tasks. Original
task will be posted with a status indication.

C. Error Error condition returned through user specified
Messages status variable when using data manipulation

language.

D. Documentation Total DBA, total applications reference manual, total
utilities, batch retrieval user guide, comprehensive
retrieval user guide, on-line query user guide,
data dictionary manual, data directory manual, on-line
directory maintenance manual.

APPLICATION A. HOL Interface Data manipulation is via user application programs
PROGRAMMING that issue calls to TOTAL.

B. Subroutine Function of the supporting host language.
I Capabilities

C. Special Function of the supporting host language.Operations .

D. I/O Outside Done through user-provided programs. S
DMS -

E. Auxiliary To be provided by user on his program area.

Storage

VII. DATA BASE A. Data Structure validity provided by system. Additional
SECURITY Validation integrity checking obtainable via special system
INTEGRITY, exit to DB administrator programs.
&

ACMINIS-
TRATION B. File Special exit is provided for interface with user-provided

Protection security procedures. Full DBA capabilities to control
user access include sub-schema (le ical view) which
specifies user password, usable se, f elements (data
item names) and inter/intra file a,..ess.

C-14

* ._ _ _ _ _ _ _ _ _

A-5

FIONEYWEi., 613CIGCO-

TOTAL: HOL-BASED DATA BASE MANAGEMENT SYSTEM' (cont.)

FUNCTION I PROPERTY PARAMEERS -zR

tC. Surveillance Content validity must be assured by :;ser application
program.

D. Failure Restart/recovery procedures are provided. Forward
Protection and backward processing of update history, optional

automatic task level checkpoint, and other capabilities
available under ENVIRON/l (Cincom TP monitor), and
CICS.

C-15

E E- 370/C

IMS: HOL-BASED NON-CODASYL DATA BASE MANAGEMENT SYSTEr '

FUNCTION PROPERTY PARAME7E7RS

1. DATA BASE IA. Item Items described in data base description (DBD) for DBMS
DEFINITION Description sequencing and selection function, described in program

at segment level for standard program use. No restric-
tions on types and coding in DBMS. With IMS/VS 1.1.5
will have field sensitivity.

1B. Logical Basic unit is segment but with 1.1.5 programs may
Structure retrieve, insert, replace, by fields. Also, logical

structure may be obtained thru secondary indexing or
logical relationships. Logical relationships may be
between segments within the same physical database or

I different data bases. Structures may be inverted thru
these logical relationships or secondary indexing.

!C. Physical Fixed length blocks. Variable length records and
Structure segments. Common buffer pool stores all data for

DL/I language access.

D. Access Access methods: HSAM, HISAM, HIDAM, HDAM. HSAM, HISAM
Methods are sequential. HDAM and HIDAM are direct. HDAM is

randomized, HISAM, and HDAM support the inverted file
and VSAM. VSAM can be used for HIDAM, HDAM, and HISAM
data bases. Inverted data bases supported by all of
above.

jE. Special Storage Special storage techniques in HSAM, HISAM, HDAM, and
Techniques HIDAM minimize storage requirements. For further

data compaction an exit is provided in DL/I to a user
routine. VSAM compacts indexes. Distributed free
space can be requested at load or reorganization time
to accommodate insertion of segments near their parents
or twins. In HIDAM and HDAM, deleted segment space

i can be reused for new data.

II. DATA BASE User program normally used for file creation.
CREATION -

III. DATA BASE Logical structures are modified in the DBD and do not
REVISION necessarily require file activity. Experience

indicates minimal impact on programs.

Physical structures are modified in the DBD and will "
normally require dumping and reloading of the DB.

IV. DATA A. Selection At segment level. Items can be described by names,
MANIPULATION Level codes, or relationship to other items. Can be made

I by requesting a single segment, or a path of segments,
or in 1.1.5 by retrieving by field. Any field in a
segment can be used in a search argument.

C-16

I.S: 6OL-BASED NON-CODASYL DATA BASE MANAGEMENT SYSTEM (cont.

t-t

FUNCTION PROPERY PAR

B. Operators, Operators: AND, OR, LOGICAL AND.
Comparators, Comparators: EQ, NOT EQ; GT, GTEQ; LT, LTEQ.
Logical Limited, heuristic, and special structure searches.
Complexity Eight logic combinations can occur at each segment

level.

IC. Reporting Reporting via host language or GIS. GIS produces
default reports, page numbering and multiple page
headers automatically. Output to all devices supported
by IMS or the CPU. A response can be reviewed at a
terminal and then sent to some other terminal for
further processing/review.

V. USER ;A. Manipulation Through service calls from host language.
INTERFACE Language English-like query language. (GIS)

1B. Mode of Batch and on-line. Access lockouts at the page level
Interaction for concurrent update purposes. Concurrent retrieval

is always possible. IMS/OS provides interminal
communications and remote job control with dynamic
priority assignment. Programs are not locked out,
they will always schedule into the message region(s)
to process. Program isolation allows two or more
programs to operate concurrently. If a user program
updates a particular segment, no other program can
access that segment until the update program reaches
a synchronization point, or is complete. (Program
Isolation in DC).

C. Error Status code returned in response to all requests for
Messages data. User can check for error. Trace facility

can be invoked at test time to provide data on each
OL/I call.
Malfunctions and errors, displayed at the IMS master S
terminal.

'D. Documentation OI/1 general information manual GH20-1260, terminal
operator guide SH20-9028, system program reference

manual SH20-9027, applications program reference
manual SH20-9026, system applications design guide
SH20-9025, utilities reference manual SH20-9029, S
messages and codes reference manual SH20-9030, IMS/VS
conversion planning guide SH20-9034, systems documenta-
tion (licensed). message format service guide SH20-
9052, and advanced function for communications SH20-
9054. GIS general information manual GH20-9035,
executive query reference guide GH20-9043, language
reference manual SH20-9038, MSG and codes SH20-9039,
advanced query reference manual SH20-9040, program
reference manual 5H20-9037, and systems documentation
(licensed).

C-17

. . - , • , . ,

IBM 37C'OS

IMS: HOL-BASED NON-CODASYL DATA BASE MANAGEMENT SYSTEM (cont.)

FUNCTION PROPERTY PAR PJETERS

VI. APPLICATION A. HOL Interface Standard call interface specifying: function, logical
PROGRAMING file, I/O area, search argument. Implemented for

COBOL, PL/l, ALC.

IB. Subroutine Standard host language rules apply.
Capabilities

C. Special None.
Operations

D. I/0 Outside Selected sets become named files in three possible
,MS states: a vector file, an ordered list file, or the

data file itself. Data file cai be saved on any
supported device via the DUMP command. Vector file
or ordered list file savable in multithread version.

E. Auxiliary GIS provides permanent and temporary files.
Storage

VII. DATA BASE A. Data Checking only for data structure and sequencing. 5
SECURITY, Validation Exit provided for user program. Editing facilities
INTEGRITY , In query language.

- &
ADMINIS- B. File I Segment sensitivity and processsing intent level of
TRATION Protection control-done in program specification block (PSB).

User provided encryption, decryption can be implemented
within the DMS through a special exit. Password and U
user profile carry security to the field level and ,
beyond with qualification of user. Field sensitivity
in IMS/VS 1.1.5 (and intent).

C. Surveillance All activities logged, including security violations.
Logs available for statistical processing.

D. Failure System automatically logs all changes to any data
Protection base and provides complete recovery utilities for

restoring data bases without re-executing application
programs. Checkpointlng and restart facilities
including synch of DL/l and OS checkpoints and
critical areas In the application program are also
provided. System can continue running if application

*9 program fails.

C-18
l . .

Table C3-
HONEYWELL 61BO/GCOS

MRDS: SELF-CONTAINED DATA BASE MANAGEMENT SYSTEM

FUNCTION PROPER-Y PARAMETERS

I. DATA BASE A. Item Naming: 1 to 32 character names.
DEFINITION Description Format: Standard PL/l data type declarations.

String Types: Fixed/varing length bit and
character strings.
Arithmetic Types: Real or complex, fixed or
floating, binary or decimal.
Alignment: Word aligned, byte aligned, or un-
aligned.

B. Logical Groupings: Data base, files, relations, tuples,
Structure attributes, domains.

Linkage: See "Physical Structure."
Structures: Relational. List, tree, network struc-
tures definable at query time.

C. Physical Data Base: Implemented as a directory and
Structure subordinate files in the Multics Storage

System.
Disk Assignment: Interrelation clustering (op-
tional), fixed and variable length fields.
Ordering: Ascending primary keys.
Linkage: Direct links, secondary in4exes.

D. Access Methods System Interface: Multics virtual file manager
(vfile-). No special I/O.

i Methods: Keyed sequential, random, linked, and/
or hashed.

E. Special Storage I Compaction: Encode and decode procedures.
Techniques Variable length fields. Unaligned data.

Efficiency: Interrelation clustering. Blocked
(pre-allocated) files for hashing. Otherwise,
keys are stored as B*-tree.

II. DATA BASE Creation: "create-mrds-db" Multics command
CREATION which translates a user written data model

source and creates a corresponding data
base shell.

Loading: Applications program(s) or Linus EUF
"store" request.

III DATA BASE 1 Utilities: 'restructure mrds db' Multics com-
REVISION mand allowing redefine, define, and unde-

fine operations on files, relations, attri-
butes, secondary keys, and foreign keys. --
Minimal to no impact on application pro-
grams using submodels.

C-19

'-

Taole C3-6 (Cont.
HONEYWELL 6180/GCOS

MRDS: SELF-CONTAINED DATA BASE (cont).

FUNCTION PROPERTY PAR4AjETES

IV. DATA A. Selection Selection: attribute(s), tuple(s), relation(s).
MANIPULATION Level Qualification: attribute(s),or function(s) ofI attribute(s).

8. Operators Comparators:-, - -, >, <, > , . Arithme-
Comparators, tic Operators: +, -, *, / ".
Logical Builtin Scalar Operators: abs, after, before, ceil,
Complexity concat, floor, index, mod, reverse, round, search,

substr, verify.
Built-inSet Operators: differ, inter, union, Boolean

Operators: & ,
Other Operators: User definable scalar functions.
Logical Complexity: Unrestricted. Relationally 1complete.*Linus EUF also includes the builtin set operators

avg, count, max, min, sum, and user definable
set functions.

C. Reporting Sorting: Interface to standard Multics sort
commands.

Reports: Interface to the Multics Report Program
Generator (MRPG).

*Llnus EUF contains, in addition to the above, a
basic report capability with controllable (or
default) headers and column-widths, settable
break-limits, and interfaces to the Multics File
System and Lister facility.

V. USER A. Manipulation HOL relational calculus selection expressions.
INTERFACE Languages Linus EUF: HOL Sequel-like selection expres-

sions.

B. Mode Of Interactive, Absentee (batch), RJE; Interface at
Interaction Multics comnand level, Linus EUF subsystem, or

application program Call; Concurrency request
thru r/d/s/m permission at data base or relation U
level.

C. Error Creation: Compiler-like error messages at date
Messages base and data submodel creation time.

Application Programs: Symbolic status/error
codes translatable into short or long mes-
sages.

EUF: Status/error messages within Linus.

D. Documentation MRDS Reference Manual (AW53).
Linus Reference Manual (AZ49).
MRPG Reference Manual (CC69).

Multics "help" command and Linus "help"
request. Marketing Education F31 and F32
course workbooks.

C-20

-- j-

Tarie C3-6 (Cont.
HONEYWELL 6180/GCOS

MRDS: SELF-CONTAINED DATA BASE (cont.)

FUNCTION PROPERTY PARAIMETES

VI. APPLICATION A. Hol Interface Languages: "call" interface from all Multics
PROGRAMMING programming languages, Selection expres-

sion is passed as a character string argu-
ment.

COBOL DML verbs also supported.

B. Subroutine Full capability to store procedures, directly
Capabilities callable from command level and/or other

programs passing arguments. Recursion and
inter-language calls fully supported. Linus EUF
has macro storing an invoking capability.

C. Special MRDS automatically performs data conversions
Operators following ANSI PLI conversion rules.

*Linus EUF has set operators avg, count, max,
min, sum and arithmetic expressions which

I operate on the data after retrieval.

D. I/O Outside Transportability: Data is completely transport-
OMS able and/or directly usable by other Multics

facilities such as the graphics system, text
formatter, report writer, and application
programs.

E. Auxiliary Temporary Working Areas: Temporary relations
Storage which become a logical (and physical) ex-

tension to the data base for the user defin-
ing them.

Permanent Working Areas: Standard Multics files.

VII DATA BASE A. Data Validation: Domain verification enforcable at
SECURITY, Validation store and modify times.
INTEGRITY, Integrity: Encode and decode normalization.

&I Interrelation integrity enforceable via for-

TRATION eign key concept.

B. File Protection Level: Access rights definable at data base, file,
relatlona and attribute levels.Permissions: Retrieve, modify, store, delete
permissions.

Qualification: Person id, project Id and/or
global.. ..

Enforcement: Hardware and software enforce-
ment via Multics Access Control List and/
or ring mechanism.

C. Surveillance Within DBMS: None at the present time.
lOutside DBMS: Standard Multics facilities for
auditing access violations.

C-21

7aoe CJl-6

HONEYWELL 6180/GCOS

MRDS: SELF-CONTAINED DATA BASE (cont.;

FUNCTION PROPERTY PARAME7ER

D. Failure Backup: Standard Multics backup and retrieve
Protection facilities "dump mrds db" command to

backup (to tape) a quiescent data base.
Rollback: Commitment/rollback capability (at

file manager level) is cuurently under devel-
opment.

Restart: Standard Multics Emergency Shut-
Down (ESD) and restart capability.

U -

I

C--2.

-I

TABLE C3-7
HONEYWELL 6180/GCOS

MDQS: Self-Contained Data Base Management System

FUNCTION PROPRTY PARAMETERS

I. DATA BASE A. Item 11 Data - Item identifiers can consist of a simple
Description 30 - character name or it can consist of that

name plus an entry - name qualification,, a
mask option, and or a conversion subroutine
specification. -.

B.. Logical I1) Elements: Data (field), record, file, data
Structure base; schema; networks and hierarchies.

2) The Application Definition File (ADF) is pre-
pared by the data base administrator for the
MDQS user. The ADF contains; data base re-
ference name, entry names, and item names.

3) Relational items

C. Physical 1) The CREATE statement createsone or more new
Structure sequential or indexed - sequential data bases

from one or more existing (transaction) data
I bases, with transformation of the transaction

entries into the forms predefined for thedesired new data base entries.

D. Access 1) Sequential, index sequential, and integrated
Methods 2) Concurrent data base access

E. Special 1 1) Implicit storing of the new - entry data base
Storage is performed only if the CREATE statement is
Techniques unlabeled.

2) In explicit storing the user can specify a S
WHEN SEQUENCE error to do additional pro- .. -.

I cessing.

II. DATA BASE 1) Data base creation and maintenance permits
& CREATION a user to:

AND a access data with full concurrencyIll. MAINTENANCE

* create a data base from one or more tran-
I saction data bases -

* update multiple data bases from multiple
transaction files

a write and or read auxiliary files res-
siding on disk or tape

* combine two or more data bases into a single
data base

* split a data base into two or more data
bases

create a data base that is a subset of a
data base-{ 0

. DATA BASE A. Selection 1) At the element level for interactive u ers .
IANIPULATION Level

C-23

S

Table C3-7

V: HONEYWE'L 5180/ 'ZE

4DCS: SEL-CONTAIED 0A7A 3ASE ,N,7

FUNCTION PRCPER: t-LAE-RS -Z

B. Operators, Five binary operators, unary operator, logical,
Comoarators, relational. Full set of BOOLEAN operators.
Logical I Conditional expression comparators.
Complexity

C. Reporting Flexible parameters (or default specs) for page
length, indenting, titles etc. Reporting is at
the Query level. Defaults or user specifies

titles, column separators, and data item display
editing characters with clauses that serve as
modifiers to the PRINT statement. These clauses
are TITLE, COLUMN, and PRINT.

-,

V. USER A. Manipulation The conversational Management Data Query (C4OQ)
INTERFACE Language subsystem through a conversation with the terminal

user, generates a MDQS procedure which will access
a data base and display the desired inforMtion
at the terminal or optionally on a file for later
viewing. The Query Language allows 'a user to
generate a report.
Primarily procedure selection.

B. Mode of On-line and batch.
I Interaction

C. Error i The user is given a list of the valid responses.

Messages I

0. Documentation Standard references.

VI. APPLICATION No HOL interface.
PROGRAMM I3G

VII. DATA BASE A. Data Data value integrity is user's responsibility. The
SECJRITY, Validation Application Definition File (ADF) is prepared by
!NTEGRIrf the DBA for the MDQS user. The ADF describes the&I names of elements & contents of the data base.-
ACMINIS- ,TRTION B. File The user must previously obtain user profile

* Protection subsystem (UPS) permission from the OBA before
execution commnads PASSWORDS.

C. Surveillance N/A

0. Failure Restart/recovery/rollback -
Protection

C-24

I

a,-w

APPENDIX 0

TOOL SURVEY

.-

9

-.9

D-1

K
SECTION D-l

PURPOSE

A survey of software tools on the candidate target environments was conducted -

during the first phase of the AMT contract. The purpose of the survey was to

identify software tools that could be incorporated in the AMT. The survey was

limited to the candidate environments because it was felt it was beyond the

scope of this effort to transport tools from other environments. The criteria

for selection of a tool for consideration for incorporation in the AMT were:

o Applicability to software measurement (Did the tool provide any metric

data?)

o Portability of tool (Can the tool be used on different hardware

configurations?)

o Interoperability of the tool (How many modifications to the tool are

necessary?) o

o Usability of the tool (How much effort is required to learn how to

operate the tool? How much effort is there to preparing input and

interpreting output that was tool-driven?)

The results of this RADC Tool Survey are presented in matrix form in paragraph

3. Background information and analysis of the state-of-the-art of software

tools and their applicability to metric appear in paragraph 2, preceding the

RADC Tools Survey. As a result of tis analysis, selective RADC tools that

have compatible hardware/operating systems with the target environments are

also included, in the matrix of paragraph 3. Finally, paragraph 4 describes

the actual tools to be used in the AMT, what other tools were considered for

use, or what tools were applied during its development. 0

D-2
!p

*l -I

SECTION D-2

CODING AND IMPLEMENTATION: METRICS APPLICABILITY

The origin of code inspection was structured programming and allied software W

engineering technologies of the early 1970's. The goal of automated static

analysis/evaluation has been to automate the compliance with the techniques

and make a search of program properties.

The program parameters are structure-based (program logical and data

structure, naming conventions, documentation conventions, etc.), control/data

flow based (avoidance of undue control complexity; assurance of

well-definedness of variables, etc.), and interface based (assurance of

correspondence between modules, subsystem, inter-system, etc). The

anomaly-detecting metrics have to do with standards enforcement (deficiencies

in source code), whereas the predictive metrics quantify the logic of design

and implementation.

For example, the JOVIAL Automated Metric System (JAMS) is designed to collect

structural information about JOVIAL programs. GE's Integrated Software

Development System (ISDS) provides a capability to analyze other languages

including FORTRAN PDL, IFTRAN, and PASCAL. A major subsystem of ISDS, the

generalized parser (GNP), the grammar description language (GDL) and grammar

tables, provides this capability and will be used in the AMT.

0

Symbolic evaluation of code has as its goal the "interpretation" of program

behavior at the programming language level. Assumption must be made about the

environment, the deterministic properties of the programming language

behavior, and the outcome of symbolic execution results. On systems such as 6
DISSECT or MACSYMA the user interactively chooses a path and performs symbolic "'

interpretation of actions along the chosen path. The system then displays the

"formulas" to the iser. The user compares original and implemented formulas

for equality. Differences between computed and actual formulas are mistakes.

Special formula formatting methods are used to make these differences highly

visible. Final control software is not yet available. Symbolic evaluation

has good candidate potential for the accuracy metrics at the system level.

D1O-3

The final type of static analysis tools, proof of correctness, can be used at

the system level, subsystem level, or the module level as assessments of

different levels of correctness. The Failure of Proof Method (FPM), uses a

mathematical approach to proving the correspondence between a program and its

formal specification. The consistency metric is highly visible here.

Dynamic testing is achieved through system exercising of programs. Typical

self-testing metrics for higher level language systems have been built on a

experimental basis and include:

o Automatic specified percentage of program logical segment coverage in

any one test; aggregated test coverage of close to 100%.

o Assistance in setting input values and evaluating output values.

o Some form of automated results comparison.

These dynamic test tools consist of two basic modules, an instrumentation

module and an analyzer module. The source language program is submitted

directly to the instrumentation module. Then the instrumentation module

accepts the source program of the module under test and instruments it by

inserting additional statements in the form of counters or sensors. The

instrumented source file is compiled and executed. At this point an analyzer

module produces a report documenting the behavior under the test during its o

execution.

D-4

I

Typical metric -like data reported are:

o Max and min values of variables.

o Number and percentage of subroutine calls executed. -f

" o Measures of program complexity.

o Statement consistency checks.

- o Program cross-references.

o Trace capability. -

o Flagging of non-ANSI code.

o Logically impossible - path detection.

o Subroutine argument/parameter verification.I'o Data range check.
o If statement trace.

o Branch trace.

o Subroutine/statement timing

o Min/max assignment values.

o First/last assignment values.

o Min/max DO Loop Control Variable.

o Final DO Loop Index Value.

o Final branch values.

o Statement, path, segment, module interface or flow execution frequencies

o Specific data associated with each executable source statement.

o Subroutine retrace capability, complete calling tree, reverse execution

capability.

o Performance indices for modules and input data.

A list of dynamic tools would include: JAVS, CABS, FAVS, RXVP, FORTUNE, CIP,

FORSAP, FETE, PPOGFORT, PROGTIME, TPL, and TAP. ,

The goal of mutation analysis is to show that small changes in program are

discovered by test data. Conversely, the test data must be strong enough to

catch the significant errors. Relevance to error detection metrics is obvious.

D-5

The Pilot Mutation System (PIMS) has been applied to FORTRAN and COBOL pilot

systems. Magnitude of the mutant error is classified as:

o Program does not compute.

o Program computes but does not run test data.

o Program compiles, test run is satisfactory, and the program is either

logically equivalent to the original or test data is not good enough.

0

Reliability analysis is still in its infancy. The goal is to determine

whether all defects have been reliably removed by tests. Any error must be

* made known by some combination of inputs. Following this theoretical approach
of examining all possible input combinations is prohibitive in terms of cost

effectiveness and computer time/capacity. The Next Error Discovery Predition

method fails because software reliability simply does not follow the

probability laws of hardware reliability.

0--6

D-6

i

SECTION D-3

MATRIX OF SOFTWARE TOOLS

The matrix of software tools having potential metric applicability follows in -*

Figure D3-1. It includes tools currently in use or planned for at RADC and

- additional non-RADC tools also worthy of consideration for AMT development or

usage. Figue D3-2 illustrates the Software Tools Survey Sheet used to collect

information about the target environment's software tools. -.

D-7

Ul

r',o •1

t , ,

I I.
Jk 9_ _ __ _ _

A 4A Is

-4a-.o ,,

• = ," a _ ___

.* I- ' S j

4c -0
- at Z Ac1

A IMa
'6

ic

at w

A I-. , ' o .a- _ ..

* .i ; ~I li,.
--

li.. I ,,•. . 1. " - .

A: - r-l -

*~ I 6

I3 &

D°8i'. - .

.3Li-

a. 2. -

4A

- :44

=II

.y A4 A

~. L - ~ I U ~ I

* D-8

m A %A %A

Ii 0

.4.

I -= -

ac 30a-C

I-A , Ip 3 --

,;' I-. Z :

S.c N IOU - 5

z~~~~9 A _ _ _ __ _ _ I -

I I I
.2 -A16*1, "6

:0 ;j 3

D-9w

600

ala

~5 1

imi

z - LA-

AS

zi .1c w

-a 6 a I6 Z

* ~ OI ~, 31, c

11 *

2. A. I T4.

S-4W i w ' I 30

F a.--6

ZS _k 2 %A 6

~ j N

_____ _____I___D-10.

3- 3

I -L

~n -.

6 433
- - 3:W4

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A;_ _ _

pi F

- -AC 46

Iwo 10. Io
1'

SI

-. I= - , -. o

6, , - . -" -

-- " ail Jt__.__I___
- - - - , - --

=6.i I ' --:'; ' --- . . . ' ,a

- 16 1 6 1 1 4 6

ii '

-~ 441 g in,-4,i,,.I

U'' m
I a1 6 -! I

t t*-~ I I I 1I -

I I '

i I I I i:' "
S' I I I I

" I Ii -___________

I 44I

D I12

...- i ~' - i

I ! . -

' ' ii i
- - - - -

"'I I " " I ;

/. °Il .-

- - °" •i 0 6 " -"'"

,,a _ _.. ._ _t: " i _ _ . . . _._-._ _ _ __. ._._._._

I " - d-" if ,, : ,, " ' " -' ,° " " k" ' " ' " " ' , , " " " :I.

Ir 3.

V-A

- .3.
t~sI 4.

600

-I" 4,-13

GENERAL ELECTRIC -

M&DSO WEST

zC7ARE 71OLz S"R'/E*!

7 :OL OR 3S(S 4 !IA MEq : O T P R N L

;M-Lops'l: 14 PUBL:C OCMAIN CR
PROPRIET'ARY?: PO p

COMTRACT 10. (IT APPLICABLE): tF PROPRIETARY,
APPROX:MATZ COS7:

IS SOURCET !WIDE AVAILLABLEY

OPERA, 10PAL Ev: RCIMEAMT
:4ARDWARE:

CPERA I G S S7zA:

C.CMPtL-:RS:

CSr-."AL IE UIREMEATS:
'e.g. , a 8SgraphiCs pacxage, etc. V

UNCTCNAL ESc:?T-:N:

(i:n: 'clude isers, rsj1t, and any references .Ifcl~C escrite

usage -:esui ts)

Figure D3-2 :":s .:p.
0-14

SECTION 0-4

TOOLS USED
|-

The tools used in AMT, considered for use, and applied during the development

of the AMT are identified in Table 04-1. The tools identified as used in the

AMT were actually incorporated in the software as part of the system. The

tools identified as considered for use are candidates for interfacing with the -.

AMT. This was not done because these systems were not available during the

span of the project. The last category of tools identified are those tools

used on the AMT, ie. these tools were utilized by the development team during

the development of AMT. SPDL is a program design language with ADA-like i

constructs and concepts. The design was written in this language and some

metrics automatically applied by the Integrated Software Development System

,ISDS). The implementation language utilized was IFTRAN, a structured FORTRAN

preprocessor developed by General Research Corporation.

1

Sg

V

S

J-15

1--

2 L 4-H u

- 0 cc-

tot 0 2 2

.) Im o >,4~-
AA 41 0 c

v 10 0 41) 4- cmC

o 0 _ v L. m i 3 l (7
40 ea V- - C 0

La.. c (2).. 0 . - to6 I . m . U ..
S-4-02 .

Z 00 S. S-. 0 U9(4-1 to ' ~ EU

S- C. A 4-1 1- 4- .1 009 I 4'

ICA to 091 0 0 L.~ 4
0. 0 . CO 0m cm m- .- 0 .

N9 0A 0U 4. 0.1 f

UL 0: =- 0co. 4) 0 C 4)

ic) N- 4J Aj 0. 4- L" 0
Lato 4.. 0 2S. .

O ~0 0 S-.~2~E

S.. EU S. -. U10
0 ~ ~ ~ L 0.U4) i .

.00.

Z. 0
Q. U) -A

EU5

u*j
ImU

61J! I. I
C 0 SLA

~ D-16

MISSION
Of

Ro~me Air Development Center
RAVC Ptafl6 and exeeuateA tLAwtch, deveiop'ent, teAt and
6etected acqui~ition potoguftm in a6uppokrt 06 Commnxd, ContAot
Comunctiona and Intettigence (C31) acivitieA. Technicoat
and enginee'Ling Auppo'vLt w~Lthn wv~eah o6 techinat competence
4cA ptovided to ESP P'Log'Lam O6jiee WPO) and otheA ESV
etement6. The~ pLincipat technicat miZM6on a/Lea6 ate
communZeaon6, etectAomagnetic guidaznc~e and contAot, 6ut-
veittane. o6 q'Lound and aekoap&ace objecUtE, intettgence. data
cotteet-on and handting, in6o'uraf.on .6y~tem, tecthnotogy,
ionoh6pheAie pk o pagofion, otid 6tate 6eienceA, mickoave.
phyaieA and etextunicez iabitity, raintonabiiity and
compatbZtt.

